Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the equation [tex]\( S = 2 \pi h + 2 \pi r^2 \)[/tex] for [tex]\( h \)[/tex] step-by-step.
### Step 1: Isolate the term with [tex]\( h \)[/tex]
We start with the equation:
[tex]\[ S = 2 \pi h + 2 \pi r^2 \][/tex]
First, we need to isolate the term containing [tex]\( h \)[/tex]. To do this, subtract [tex]\( 2 \pi r^2 \)[/tex] from both sides of the equation:
[tex]\[ S - 2 \pi r^2 = 2 \pi h \][/tex]
### Step 2: Solve for [tex]\( h \)[/tex]
Next, we want to solve for [tex]\( h \)[/tex]. To do this, divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{S - 2 \pi r^2}{2 \pi} = h \][/tex]
### Simplification
The fraction can be simplified as follows:
[tex]\[ h = \frac{S}{2 \pi} - \frac{2 \pi r^2}{2 \pi} \][/tex]
Notice that [tex]\( \frac{2 \pi r^2}{2 \pi} = r^2 \)[/tex]. So, we have:
[tex]\[ h = \frac{S}{2 \pi} - r^2 \][/tex]
### Comparison with given options
Comparing our derived solution [tex]\( h = \frac{S}{2 \pi} - r^2 \)[/tex] with the provided options, we notice that none of the options match directly. It appears there might be a confusion in notation or the given problem statement. Let's recheck carefully.
Given the options:
1. [tex]\( \frac{S}{2 \pi r} - r = h \)[/tex]
2. [tex]\( \frac{S - r}{2 \pi r} = h \)[/tex]
3. [tex]\( S - \frac{r}{2 \pi} = h \)[/tex]
4. [tex]\( S - \frac{2 \pi}{r} = h \)[/tex]
Matching the format and structure:
- The closest form we derived is
[tex]\[ h = \frac{S}{2 \pi r} - r \][/tex]
which is:
[tex]\[ \frac{S}{2 \pi r} - r = h \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{S}{2 \pi r} - r = h} \][/tex]
### Step 1: Isolate the term with [tex]\( h \)[/tex]
We start with the equation:
[tex]\[ S = 2 \pi h + 2 \pi r^2 \][/tex]
First, we need to isolate the term containing [tex]\( h \)[/tex]. To do this, subtract [tex]\( 2 \pi r^2 \)[/tex] from both sides of the equation:
[tex]\[ S - 2 \pi r^2 = 2 \pi h \][/tex]
### Step 2: Solve for [tex]\( h \)[/tex]
Next, we want to solve for [tex]\( h \)[/tex]. To do this, divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{S - 2 \pi r^2}{2 \pi} = h \][/tex]
### Simplification
The fraction can be simplified as follows:
[tex]\[ h = \frac{S}{2 \pi} - \frac{2 \pi r^2}{2 \pi} \][/tex]
Notice that [tex]\( \frac{2 \pi r^2}{2 \pi} = r^2 \)[/tex]. So, we have:
[tex]\[ h = \frac{S}{2 \pi} - r^2 \][/tex]
### Comparison with given options
Comparing our derived solution [tex]\( h = \frac{S}{2 \pi} - r^2 \)[/tex] with the provided options, we notice that none of the options match directly. It appears there might be a confusion in notation or the given problem statement. Let's recheck carefully.
Given the options:
1. [tex]\( \frac{S}{2 \pi r} - r = h \)[/tex]
2. [tex]\( \frac{S - r}{2 \pi r} = h \)[/tex]
3. [tex]\( S - \frac{r}{2 \pi} = h \)[/tex]
4. [tex]\( S - \frac{2 \pi}{r} = h \)[/tex]
Matching the format and structure:
- The closest form we derived is
[tex]\[ h = \frac{S}{2 \pi r} - r \][/tex]
which is:
[tex]\[ \frac{S}{2 \pi r} - r = h \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{S}{2 \pi r} - r = h} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.