Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Use the distributive property to multiply the polynomials.

[tex]\[ -5x^2(6x - 1) \][/tex]

Enter the simplified polynomial expression in the box.

Sagot :

Sure, let's simplify the polynomial expression [tex]\(-5 x^2 (6 x - 1)\)[/tex] step-by-step using the distributive property.

1. Distribute the [tex]\(-5 x^2\)[/tex] term across the terms inside the parentheses:

This means we will multiply [tex]\(-5 x^2\)[/tex] by each term inside the parentheses separately.

2. First, multiply [tex]\(-5 x^2\)[/tex] by [tex]\(6 x\)[/tex]:
[tex]\[ -5 x^2 \cdot 6 x = -30 x^3 \][/tex]

3. Next, multiply [tex]\(-5 x^2\)[/tex] by [tex]\(-1\)[/tex]:
[tex]\[ -5 x^2 \cdot (-1) = 5 x^2 \][/tex]

4. Combine the results:

So, the expression [tex]\(-5 x^2 (6 x - 1)\)[/tex] simplifies to:
[tex]\[ -30 x^3 + 5 x^2 \][/tex]

Therefore, the simplified polynomial expression is:
[tex]\[ -30 x^3 + 5 x^2 \][/tex]