At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which function has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex], we need to calculate the rate of change (slope) for each tabular data set. The rate of change is given by the difference in [tex]\(y\)[/tex]-values divided by the difference in [tex]\(x\)[/tex]-values between points.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.