Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which function has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex], we need to calculate the rate of change (slope) for each tabular data set. The rate of change is given by the difference in [tex]\(y\)[/tex]-values divided by the difference in [tex]\(x\)[/tex]-values between points.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.