Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which function has a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex], we need to calculate the rate of change (slope) for each tabular data set. The rate of change is given by the difference in [tex]\(y\)[/tex]-values divided by the difference in [tex]\(x\)[/tex]-values between points.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
Let's evaluate each dataset.
### First Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (20, -1) \)[/tex] and [tex]\( (21, -1.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (21, -1.5) \)[/tex] and [tex]\( (22, -2) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. Finally, check between [tex]\( (22, -2) \)[/tex] and [tex]\( (23, -2.5) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change is consistently [tex]\(-0.5\)[/tex].
### Second Dataset
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. Between [tex]\( (-12, 7) \)[/tex] and [tex]\( (-11, 11) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. To confirm this rate is consistent, check between [tex]\( (-11, 11) \)[/tex] and [tex]\( (-10, 14) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. Finally, check between [tex]\( (-10, 14) \)[/tex] and [tex]\( (-9, 17) \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in this dataset is not constant and varies.
### Conclusion
The first dataset has a constant rate of change of [tex]\(-0.5\)[/tex], and the second dataset does not demonstrate a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. Thus, neither dataset has a constant rate of change of [tex]\(-\frac{1}{4}\)[/tex]. The function with a constant additive rate of change of [tex]\(-\frac{1}{4}\)[/tex] is not present in the given datasets.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.