Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To rewrite the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex], follow these steps:
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.