At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To rewrite the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex], follow these steps:
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.