Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To rewrite the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex], follow these steps:
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.