Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To rewrite the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex], follow these steps:
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
1. Identify the coefficients of sine and cosine:
- [tex]\( a = 2 \)[/tex] (coefficient of [tex]\( \sin(4\pi t) \)[/tex])
- [tex]\( b = 5 \)[/tex] (coefficient of [tex]\( \cos(4\pi t) \)[/tex])
2. Calculate the amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] can be determined using the Pythagorean theorem applied to the coefficients of the trigonometric components:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
Plugging in the values,
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385 \][/tex]
3. Determine the angular frequency [tex]\( \omega \)[/tex]:
In the original equation, the angular frequency [tex]\( \omega \)[/tex] is associated with both trigonometric functions. Given the term [tex]\( 4\pi t \)[/tex], we have:
[tex]\[ \omega = 4\pi \][/tex]
4. Calculate the phase angle [tex]\( \phi \)[/tex]:
The phase angle [tex]\( \phi \)[/tex] can be found using the arctangent function, specifically the four-quadrant inverse tangent function [tex]\( \text{atan2} \)[/tex], which accounts for the correct quadrant of the angle:
[tex]\[ \phi = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{5}{2}\right) \][/tex]
Evaluating this:
[tex]\[ \phi \approx 1.190 \text{ radians} \][/tex]
Therefore, the equation [tex]\( y(t) = 2 \sin(4\pi t) + 5 \cos(4\pi t) \)[/tex] can be rewritten in the desired form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin(12.566 t + 1.190) \][/tex]
Here, we have:
- Amplitude [tex]\( A = 5.385 \)[/tex]
- Angular frequency [tex]\( \omega = 12.566 \)[/tex]
- Phase angle [tex]\( \phi = 1.190 \)[/tex] radians.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.