Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To express [tex]\( y(t) = 2 \sin (4\pi t) + 5 \cos (4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex], we need to determine the amplitude [tex]\( A \)[/tex], the angular frequency [tex]\( \omega \)[/tex], and the phase shift [tex]\( \phi \)[/tex] of the spring motion.
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.