Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To express [tex]\( y(t) = 2 \sin (4\pi t) + 5 \cos (4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex], we need to determine the amplitude [tex]\( A \)[/tex], the angular frequency [tex]\( \omega \)[/tex], and the phase shift [tex]\( \phi \)[/tex] of the spring motion.
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.