Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the probability of either event [tex]\(A\)[/tex] or event [tex]\(B\)[/tex] occurring, denoted as [tex]\(P(A \text{ or } B)\)[/tex], you can use the formula for the union of two mutually exclusive events. Since events [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are mutually exclusive, they cannot happen at the same time. The formula for mutually exclusive events is:
[tex]\[ P(A \text{ or } B) = P(A) + P(B) \][/tex]
Given that the probability of event [tex]\(A\)[/tex] is [tex]\(P(A) = 0.50\)[/tex] and the probability of event [tex]\(B\)[/tex] is [tex]\(P(B) = 0.30\)[/tex], you simply add these probabilities together:
[tex]\[ P(A \text{ or } B) = 0.50 + 0.30 = 0.80 \][/tex]
Therefore, the probability of either event [tex]\(A\)[/tex] or event [tex]\(B\)[/tex] occurring is:
[tex]\[ \boxed{0.80} \][/tex]
Hence, the correct answer is:
B. 0.80
[tex]\[ P(A \text{ or } B) = P(A) + P(B) \][/tex]
Given that the probability of event [tex]\(A\)[/tex] is [tex]\(P(A) = 0.50\)[/tex] and the probability of event [tex]\(B\)[/tex] is [tex]\(P(B) = 0.30\)[/tex], you simply add these probabilities together:
[tex]\[ P(A \text{ or } B) = 0.50 + 0.30 = 0.80 \][/tex]
Therefore, the probability of either event [tex]\(A\)[/tex] or event [tex]\(B\)[/tex] occurring is:
[tex]\[ \boxed{0.80} \][/tex]
Hence, the correct answer is:
B. 0.80
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.