Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Let [tex]$\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$[/tex], [tex]$r = |\bar{r}|$[/tex], and [tex]$\bar{a}$[/tex] be a constant vector. Find the value of [tex]$\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)$[/tex].

Sagot :

To solve for the divergence of the vector field [tex]\(\frac{\bar{a} \times \bar{r}}{r^n}\)[/tex], we start by understanding the components involved.

Given:
- [tex]\(\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\)[/tex]
- [tex]\(r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}\)[/tex]
- [tex]\(\bar{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}\)[/tex]
- We need to find [tex]\(\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)\)[/tex]

The cross product [tex]\(\bar{a} \times \bar{r}\)[/tex] is given by:
[tex]\[ \bar{a} \times \bar{r} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ x & y & z \\ \end{array}\right| = (a_y z - a_z y)\mathbf{i} + (a_z x - a_x z)\mathbf{j} + (a_x y - a_y x)\mathbf{k} \][/tex]

This can be written as:
[tex]\[ \bar{a} \times \bar{r} = [(a_y z - a_z y), (a_z x - a_x z), (a_x y - a_y x)] \][/tex]

Now, consider the vector field:
[tex]\[ \mathbf{F} = \frac{\bar{a} \times \bar{r}}{r^n} = \left( \frac{a_y z - a_z y}{r^n}, \frac{a_z x - a_x z}{r^n}, \frac{a_x y - a_y x}{r^n} \right) \][/tex]

We need to compute [tex]\(\operatorname{div}(\mathbf{F})\)[/tex], which is:
[tex]\[ \operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) + \frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) + \frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) \][/tex]

To compute these partial derivatives, use the quotient rule:
[tex]\[ \frac{\partial}{\partial u} \left( \frac{g(v)}{h(v)} \right) = \frac{h(v) \frac{\partial g(v)}{\partial u} - g(v) \frac{\partial h(v)}{\partial u}}{h(v)^2} \][/tex]

Let's calculate each term separately:
1. [tex]\(\frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right)\)[/tex]:
- [tex]\(g(x, y, z) = a_y z - a_z y\)[/tex]
- [tex]\(h(x, y, z) = r^n\)[/tex]

[tex]\[ \frac{\partial}{\partial x} (a_y z - a_z y) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} r^n = n r^{n-2} x \][/tex]

[tex]\[ \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) = \frac{(r^n \cdot 0 - (a_y z - a_z y) \cdot n r^{n-2} x)}{r^{2n}} = -\frac{n x (a_y z - a_z y)}{r^{n+2}} \][/tex]

Similarly, for other terms:
2. [tex]\(\frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) = -\frac{n y (a_z x - a_x z)}{r^{n+2}}\)[/tex]
3. [tex]\(\frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) = -\frac{n z (a_x y - a_y x)}{r^{n+2}}\)[/tex]

Adding these together:
[tex]\[ \operatorname{div}(\mathbf{F}) = -\frac{n x (a_y z - a_z y)}{r^{n+2}} - \frac{n y (a_z x - a_x z)}{r^{n+2}} - \frac{n z (a_x y - a_y x)}{r^{n+2}} \][/tex]

Notice that each term involves a specific arrangement of constants and variables, leading to the cancellation due to the linearity of the vector components and symmetry. Upon simplifying:
[tex]\[ \operatorname{div}(\mathbf{F}) = 0 \][/tex]

Thus, the divergence of the given vector field is:
[tex]\[ \operatorname{div} \left( \frac{\bar{a} \times \bar{r}}{r^n} \right) = 0 \][/tex]