Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for the divergence of the vector field [tex]\(\frac{\bar{a} \times \bar{r}}{r^n}\)[/tex], we start by understanding the components involved.
Given:
- [tex]\(\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\)[/tex]
- [tex]\(r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}\)[/tex]
- [tex]\(\bar{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}\)[/tex]
- We need to find [tex]\(\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)\)[/tex]
The cross product [tex]\(\bar{a} \times \bar{r}\)[/tex] is given by:
[tex]\[ \bar{a} \times \bar{r} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ x & y & z \\ \end{array}\right| = (a_y z - a_z y)\mathbf{i} + (a_z x - a_x z)\mathbf{j} + (a_x y - a_y x)\mathbf{k} \][/tex]
This can be written as:
[tex]\[ \bar{a} \times \bar{r} = [(a_y z - a_z y), (a_z x - a_x z), (a_x y - a_y x)] \][/tex]
Now, consider the vector field:
[tex]\[ \mathbf{F} = \frac{\bar{a} \times \bar{r}}{r^n} = \left( \frac{a_y z - a_z y}{r^n}, \frac{a_z x - a_x z}{r^n}, \frac{a_x y - a_y x}{r^n} \right) \][/tex]
We need to compute [tex]\(\operatorname{div}(\mathbf{F})\)[/tex], which is:
[tex]\[ \operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) + \frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) + \frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) \][/tex]
To compute these partial derivatives, use the quotient rule:
[tex]\[ \frac{\partial}{\partial u} \left( \frac{g(v)}{h(v)} \right) = \frac{h(v) \frac{\partial g(v)}{\partial u} - g(v) \frac{\partial h(v)}{\partial u}}{h(v)^2} \][/tex]
Let's calculate each term separately:
1. [tex]\(\frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right)\)[/tex]:
- [tex]\(g(x, y, z) = a_y z - a_z y\)[/tex]
- [tex]\(h(x, y, z) = r^n\)[/tex]
[tex]\[ \frac{\partial}{\partial x} (a_y z - a_z y) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} r^n = n r^{n-2} x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) = \frac{(r^n \cdot 0 - (a_y z - a_z y) \cdot n r^{n-2} x)}{r^{2n}} = -\frac{n x (a_y z - a_z y)}{r^{n+2}} \][/tex]
Similarly, for other terms:
2. [tex]\(\frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) = -\frac{n y (a_z x - a_x z)}{r^{n+2}}\)[/tex]
3. [tex]\(\frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) = -\frac{n z (a_x y - a_y x)}{r^{n+2}}\)[/tex]
Adding these together:
[tex]\[ \operatorname{div}(\mathbf{F}) = -\frac{n x (a_y z - a_z y)}{r^{n+2}} - \frac{n y (a_z x - a_x z)}{r^{n+2}} - \frac{n z (a_x y - a_y x)}{r^{n+2}} \][/tex]
Notice that each term involves a specific arrangement of constants and variables, leading to the cancellation due to the linearity of the vector components and symmetry. Upon simplifying:
[tex]\[ \operatorname{div}(\mathbf{F}) = 0 \][/tex]
Thus, the divergence of the given vector field is:
[tex]\[ \operatorname{div} \left( \frac{\bar{a} \times \bar{r}}{r^n} \right) = 0 \][/tex]
Given:
- [tex]\(\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\)[/tex]
- [tex]\(r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}\)[/tex]
- [tex]\(\bar{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}\)[/tex]
- We need to find [tex]\(\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)\)[/tex]
The cross product [tex]\(\bar{a} \times \bar{r}\)[/tex] is given by:
[tex]\[ \bar{a} \times \bar{r} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ x & y & z \\ \end{array}\right| = (a_y z - a_z y)\mathbf{i} + (a_z x - a_x z)\mathbf{j} + (a_x y - a_y x)\mathbf{k} \][/tex]
This can be written as:
[tex]\[ \bar{a} \times \bar{r} = [(a_y z - a_z y), (a_z x - a_x z), (a_x y - a_y x)] \][/tex]
Now, consider the vector field:
[tex]\[ \mathbf{F} = \frac{\bar{a} \times \bar{r}}{r^n} = \left( \frac{a_y z - a_z y}{r^n}, \frac{a_z x - a_x z}{r^n}, \frac{a_x y - a_y x}{r^n} \right) \][/tex]
We need to compute [tex]\(\operatorname{div}(\mathbf{F})\)[/tex], which is:
[tex]\[ \operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) + \frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) + \frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) \][/tex]
To compute these partial derivatives, use the quotient rule:
[tex]\[ \frac{\partial}{\partial u} \left( \frac{g(v)}{h(v)} \right) = \frac{h(v) \frac{\partial g(v)}{\partial u} - g(v) \frac{\partial h(v)}{\partial u}}{h(v)^2} \][/tex]
Let's calculate each term separately:
1. [tex]\(\frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right)\)[/tex]:
- [tex]\(g(x, y, z) = a_y z - a_z y\)[/tex]
- [tex]\(h(x, y, z) = r^n\)[/tex]
[tex]\[ \frac{\partial}{\partial x} (a_y z - a_z y) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} r^n = n r^{n-2} x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) = \frac{(r^n \cdot 0 - (a_y z - a_z y) \cdot n r^{n-2} x)}{r^{2n}} = -\frac{n x (a_y z - a_z y)}{r^{n+2}} \][/tex]
Similarly, for other terms:
2. [tex]\(\frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) = -\frac{n y (a_z x - a_x z)}{r^{n+2}}\)[/tex]
3. [tex]\(\frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) = -\frac{n z (a_x y - a_y x)}{r^{n+2}}\)[/tex]
Adding these together:
[tex]\[ \operatorname{div}(\mathbf{F}) = -\frac{n x (a_y z - a_z y)}{r^{n+2}} - \frac{n y (a_z x - a_x z)}{r^{n+2}} - \frac{n z (a_x y - a_y x)}{r^{n+2}} \][/tex]
Notice that each term involves a specific arrangement of constants and variables, leading to the cancellation due to the linearity of the vector components and symmetry. Upon simplifying:
[tex]\[ \operatorname{div}(\mathbf{F}) = 0 \][/tex]
Thus, the divergence of the given vector field is:
[tex]\[ \operatorname{div} \left( \frac{\bar{a} \times \bar{r}}{r^n} \right) = 0 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.