Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through the problem step-by-step.
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.