Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's go through the problem step-by-step.
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.