Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through the problem step-by-step.
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
Given:
[tex]\[ \tan(x) = \frac{1}{3} \][/tex]
with [tex]\( x \)[/tex] within the interval [tex]\( 90^\circ < x < 270^\circ \)[/tex]. This indicates that [tex]\( x \)[/tex] is in the second or third quadrant. Given that [tex]\( \tan(x) \)[/tex] is positive, [tex]\( x \)[/tex] is in the third quadrant.
We need to find:
[tex]\[ \frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)} \][/tex]
### Step-by-Step Solution:
1. Find [tex]\( \sin(x) \)[/tex] and [tex]\( \cos(x) \)[/tex]:
[tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex], thus
[tex]\[ \frac{\sin(x)}{\cos(x)} = \frac{1}{3} \][/tex]
Let:
[tex]\[ \sin(x) = a \][/tex]
[tex]\[ \cos(x) = b \][/tex]
Such that:
[tex]\[ \frac{a}{b} = \frac{1}{3} \][/tex]
[tex]\[ a = \frac{b}{3} \][/tex]
Use the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
[tex]\[ \left(\frac{b}{3}\right)^2 + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + b^2 = 1 \][/tex]
[tex]\[ \frac{b^2}{9} + \frac{9b^2}{9} = 1 \][/tex]
[tex]\[ \frac{10b^2}{9} = 1 \][/tex]
[tex]\[ 10b^2 = 9 \][/tex]
[tex]\[ b^2 = \frac{9}{10} \][/tex]
[tex]\[ b = \pm \frac{3}{\sqrt{10}} \][/tex]
Since [tex]\( x \)[/tex] is in the third quadrant, [tex]\( \cos(x) \)[/tex] is negative:
[tex]\[ \cos(x) = -\frac{3}{\sqrt{10}} \][/tex]
Then,
[tex]\[ \sin(x) = \frac{b}{3} = \frac{-\frac{3}{\sqrt{10}}}{3} = -\frac{1}{\sqrt{10}} \][/tex]
2. Calculate [tex]\( \sin(2x) \)[/tex] and [tex]\( \cos(2x) \)[/tex]:
Using double-angle identities:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
[tex]\[ \sin(2x) = 2 \left(-\frac{1}{\sqrt{10}}\right) \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ \sin(2x) = 2 \left(\frac{3}{10}\right) \][/tex]
[tex]\[ \sin(2x) = \frac{6}{10} = 0.6 \][/tex]
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]
[tex]\[ \cos(2x) = \left(-\frac{3}{\sqrt{10}}\right)^2 - \left(-\frac{1}{\sqrt{10}}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{9}{10} - \frac{1}{10} \][/tex]
[tex]\[ \cos(2x) = \frac{8}{10} = 0.8 \][/tex]
3. Evaluate the given expression [tex]\(\frac{\sin(2x) - \cos(x)}{2 \tan(x) + \sin(2x)}\)[/tex]:
Numerator:
[tex]\[ \sin(2x) - \cos(x) \][/tex]
[tex]\[ 0.6 - \left(-\frac{3}{\sqrt{10}}\right) \][/tex]
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} \][/tex]
Denominator:
[tex]\[ 2 \tan(x) + \sin(2x) \][/tex]
[tex]\[ 2 \left(\frac{1}{3}\right) + 0.6 \][/tex]
[tex]\[ \frac{2}{3} + 0.6 \][/tex]
Converting 0.6 to a fraction:
[tex]\[ 0.6 = \frac{6}{10} = \frac{3}{5} \][/tex]
Then:
[tex]\[ \frac{2}{3} + \frac{3}{5} \][/tex]
[tex]\[ = \frac{10}{15} + \frac{9}{15} \][/tex]
[tex]\[ = \frac{19}{15} \][/tex]
So, the expression simplifies to:
[tex]\[ \frac{0.6 + \frac{3}{\sqrt{10}}}{\frac{19}{15}} \][/tex]
Simplify numerator:
[tex]\[ 0.6 + \frac{3}{\sqrt{10}} = \frac{6}{10} + \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{10}} \left( \sin(2x) - \cos(x) \right)\][/tex]
Finally:
[tex]\[ \boxed{1.2226447089872476}\][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.