Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

We wish to determine the moles of [tex]CO_2[/tex] produced when 50.0 mL of 2.0 M HCl reacts with excess [tex]Na_2CO_3[/tex].

[tex]\[
\begin{aligned}
2 HCl (aq) + & Na_2CO_3 (aq) \rightarrow \\
& 2 NaCl (aq) + H_2O (l) + CO_2 (g)
\end{aligned}
\][/tex]

How many moles of HCl are present in 50.0 mL of 2.0 M HCl?

(Note: The last part of the original text was unclear and seemed to contain typographical errors. I have removed it to ensure clarity.)


Sagot :

Certainly! Let's break down the problem step by step.

1. Identify Important Information:
- Volume of HCl solution [tex]\(\left( \mathrm{HCl(aq)} \right)\)[/tex]: 50.0 mL
- Molarity of HCl solution: 2.0 M (Moles per liter)

2. Convert the Volume from Milliliters to Liters:
[tex]\[ \text{Volume in Liters} = \frac{\text{Volume in Milliliters}}{1000} \][/tex]
Substituting the given volume:
[tex]\[ \text{Volume in Liters} = \frac{50.0 \text{ mL}}{1000} = 0.050 \text{ L} \][/tex]

3. Calculate Moles of HCl:
Molarity (M) is defined as the number of moles of solute per liter of solution. Therefore, we can use the formula:
[tex]\[ \text{Moles of HCl} = \text{Molarity} \times \text{Volume (in Liters)} \][/tex]
Substituting the values:
[tex]\[ \text{Moles of HCl} = 2.0 \text{ M} \times 0.050 \text{ L} = 0.10 \text{ moles} \][/tex]

4. Determine the Moles of [tex]\( CO_2 \)[/tex] Produced:
According to the balanced chemical equation:
[tex]\[ 2 \, \mathrm{HCl(aq)} + \mathrm{Na_2CO_3(aq)} \rightarrow 2 \, \mathrm{NaCl(aq)} + \mathrm{H_2O(l)} + \mathrm{CO_2(g)} \][/tex]
- 2 moles of HCl produce 1 mole of [tex]\( CO_2 \)[/tex].

Therefore, the moles of [tex]\( CO_2 \)[/tex] produced can be found by dividing the moles of HCl by 2:
[tex]\[ \text{Moles of \( CO_2 \)} = \frac{\text{Moles of HCl}}{2} = \frac{0.10 \text{ moles}}{2} = 0.05 \text{ moles} \][/tex]

So, when 50.0 mL of 2.0 M HCl reacts with excess Na₂CO₃, 0.05 moles of [tex]\( CO_2 \)[/tex] are produced.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.