Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down the problem step by step.
1. Identify Important Information:
- Volume of HCl solution [tex]\(\left( \mathrm{HCl(aq)} \right)\)[/tex]: 50.0 mL
- Molarity of HCl solution: 2.0 M (Moles per liter)
2. Convert the Volume from Milliliters to Liters:
[tex]\[ \text{Volume in Liters} = \frac{\text{Volume in Milliliters}}{1000} \][/tex]
Substituting the given volume:
[tex]\[ \text{Volume in Liters} = \frac{50.0 \text{ mL}}{1000} = 0.050 \text{ L} \][/tex]
3. Calculate Moles of HCl:
Molarity (M) is defined as the number of moles of solute per liter of solution. Therefore, we can use the formula:
[tex]\[ \text{Moles of HCl} = \text{Molarity} \times \text{Volume (in Liters)} \][/tex]
Substituting the values:
[tex]\[ \text{Moles of HCl} = 2.0 \text{ M} \times 0.050 \text{ L} = 0.10 \text{ moles} \][/tex]
4. Determine the Moles of [tex]\( CO_2 \)[/tex] Produced:
According to the balanced chemical equation:
[tex]\[ 2 \, \mathrm{HCl(aq)} + \mathrm{Na_2CO_3(aq)} \rightarrow 2 \, \mathrm{NaCl(aq)} + \mathrm{H_2O(l)} + \mathrm{CO_2(g)} \][/tex]
- 2 moles of HCl produce 1 mole of [tex]\( CO_2 \)[/tex].
Therefore, the moles of [tex]\( CO_2 \)[/tex] produced can be found by dividing the moles of HCl by 2:
[tex]\[ \text{Moles of \( CO_2 \)} = \frac{\text{Moles of HCl}}{2} = \frac{0.10 \text{ moles}}{2} = 0.05 \text{ moles} \][/tex]
So, when 50.0 mL of 2.0 M HCl reacts with excess Na₂CO₃, 0.05 moles of [tex]\( CO_2 \)[/tex] are produced.
1. Identify Important Information:
- Volume of HCl solution [tex]\(\left( \mathrm{HCl(aq)} \right)\)[/tex]: 50.0 mL
- Molarity of HCl solution: 2.0 M (Moles per liter)
2. Convert the Volume from Milliliters to Liters:
[tex]\[ \text{Volume in Liters} = \frac{\text{Volume in Milliliters}}{1000} \][/tex]
Substituting the given volume:
[tex]\[ \text{Volume in Liters} = \frac{50.0 \text{ mL}}{1000} = 0.050 \text{ L} \][/tex]
3. Calculate Moles of HCl:
Molarity (M) is defined as the number of moles of solute per liter of solution. Therefore, we can use the formula:
[tex]\[ \text{Moles of HCl} = \text{Molarity} \times \text{Volume (in Liters)} \][/tex]
Substituting the values:
[tex]\[ \text{Moles of HCl} = 2.0 \text{ M} \times 0.050 \text{ L} = 0.10 \text{ moles} \][/tex]
4. Determine the Moles of [tex]\( CO_2 \)[/tex] Produced:
According to the balanced chemical equation:
[tex]\[ 2 \, \mathrm{HCl(aq)} + \mathrm{Na_2CO_3(aq)} \rightarrow 2 \, \mathrm{NaCl(aq)} + \mathrm{H_2O(l)} + \mathrm{CO_2(g)} \][/tex]
- 2 moles of HCl produce 1 mole of [tex]\( CO_2 \)[/tex].
Therefore, the moles of [tex]\( CO_2 \)[/tex] produced can be found by dividing the moles of HCl by 2:
[tex]\[ \text{Moles of \( CO_2 \)} = \frac{\text{Moles of HCl}}{2} = \frac{0.10 \text{ moles}}{2} = 0.05 \text{ moles} \][/tex]
So, when 50.0 mL of 2.0 M HCl reacts with excess Na₂CO₃, 0.05 moles of [tex]\( CO_2 \)[/tex] are produced.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.