Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the given problems step-by-step:
### Problem 3:
Given that [tex]\( r = \binom{4a}{3} \)[/tex], [tex]\( q = \binom{5}{-4} \)[/tex], and [tex]\( r \cdot q = -2 \)[/tex], we need to find the value of [tex]\( a \)[/tex].
1. Understanding the Binomial Coefficient [tex]\( q \)[/tex]:
[tex]\[ q = \binom{5}{-4} \][/tex]
The binomial coefficient [tex]\( \binom{n}{k} \)[/tex] is defined for non-negative integers [tex]\( n \)[/tex] and [tex]\( k \)[/tex]. If [tex]\( k \)[/tex] is negative, the binomial coefficient is zero:
[tex]\[ \binom{5}{-4} = 0 \][/tex]
2. Analyzing the Given Equation:
Since [tex]\( q = 0 \)[/tex], we substitute [tex]\( q \)[/tex] into [tex]\( r \cdot q \)[/tex]:
[tex]\[ r \cdot q = r \cdot 0 = 0 \][/tex]
However, it is given that [tex]\( r \cdot q = -2 \)[/tex]. This leads to a contradiction because any number multiplied by zero should result in zero, not [tex]\(-2\)[/tex]. Therefore, there seems to be an inconsistency in the problem as stated, and it cannot be solved with the given information.
### Problem 4:
Given two vectors:
[tex]\[ y = \begin{pmatrix} 3 - x \\ 5x - 2 \end{pmatrix}, \quad z = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \][/tex]
we need to find the value of [tex]\( x \)[/tex] such that the dot product [tex]\( y \cdot z = -9 \)[/tex].
1. Compute the Dot Product:
The dot product of two vectors [tex]\( y \)[/tex] and [tex]\( z \)[/tex] is given by:
[tex]\[ y \cdot z = (3 - x)(-1) + (5x - 2)(-1) \][/tex]
2. Expand and Simplify:
[tex]\[ y \cdot z = - (3 - x) - (5x - 2) \][/tex]
[tex]\[ y \cdot z = -3 + x - 5x + 2 \][/tex]
[tex]\[ y \cdot z = -3 + 2 + x - 5x \][/tex]
[tex]\[ y \cdot z = -1 - 4x \][/tex]
3. Set Equal to the Given Value:
Given [tex]\( y \cdot z = -9 \)[/tex], we substitute and solve for [tex]\( x \)[/tex]:
[tex]\[ -1 - 4x = -9 \][/tex]
[tex]\[ -1 - 4x + 1 = -9 + 1 \][/tex]
[tex]\[ -4x = -8 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{2}\)[/tex].
### Final Answers:
3. The value of [tex]\( a \)[/tex] cannot be determined due to an inconsistency in the provided information.
4. The value of [tex]\( x \)[/tex] is [tex]\(\boxed{2}\)[/tex].
### Problem 3:
Given that [tex]\( r = \binom{4a}{3} \)[/tex], [tex]\( q = \binom{5}{-4} \)[/tex], and [tex]\( r \cdot q = -2 \)[/tex], we need to find the value of [tex]\( a \)[/tex].
1. Understanding the Binomial Coefficient [tex]\( q \)[/tex]:
[tex]\[ q = \binom{5}{-4} \][/tex]
The binomial coefficient [tex]\( \binom{n}{k} \)[/tex] is defined for non-negative integers [tex]\( n \)[/tex] and [tex]\( k \)[/tex]. If [tex]\( k \)[/tex] is negative, the binomial coefficient is zero:
[tex]\[ \binom{5}{-4} = 0 \][/tex]
2. Analyzing the Given Equation:
Since [tex]\( q = 0 \)[/tex], we substitute [tex]\( q \)[/tex] into [tex]\( r \cdot q \)[/tex]:
[tex]\[ r \cdot q = r \cdot 0 = 0 \][/tex]
However, it is given that [tex]\( r \cdot q = -2 \)[/tex]. This leads to a contradiction because any number multiplied by zero should result in zero, not [tex]\(-2\)[/tex]. Therefore, there seems to be an inconsistency in the problem as stated, and it cannot be solved with the given information.
### Problem 4:
Given two vectors:
[tex]\[ y = \begin{pmatrix} 3 - x \\ 5x - 2 \end{pmatrix}, \quad z = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \][/tex]
we need to find the value of [tex]\( x \)[/tex] such that the dot product [tex]\( y \cdot z = -9 \)[/tex].
1. Compute the Dot Product:
The dot product of two vectors [tex]\( y \)[/tex] and [tex]\( z \)[/tex] is given by:
[tex]\[ y \cdot z = (3 - x)(-1) + (5x - 2)(-1) \][/tex]
2. Expand and Simplify:
[tex]\[ y \cdot z = - (3 - x) - (5x - 2) \][/tex]
[tex]\[ y \cdot z = -3 + x - 5x + 2 \][/tex]
[tex]\[ y \cdot z = -3 + 2 + x - 5x \][/tex]
[tex]\[ y \cdot z = -1 - 4x \][/tex]
3. Set Equal to the Given Value:
Given [tex]\( y \cdot z = -9 \)[/tex], we substitute and solve for [tex]\( x \)[/tex]:
[tex]\[ -1 - 4x = -9 \][/tex]
[tex]\[ -1 - 4x + 1 = -9 + 1 \][/tex]
[tex]\[ -4x = -8 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{2}\)[/tex].
### Final Answers:
3. The value of [tex]\( a \)[/tex] cannot be determined due to an inconsistency in the provided information.
4. The value of [tex]\( x \)[/tex] is [tex]\(\boxed{2}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.