Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's analyze the given information and interpret the distribution of [tex]\( X \)[/tex].
Given:
- The mean height of an adult giraffe is 17 feet.
- The standard deviation of the height is 1 foot.
- The height [tex]\( X \)[/tex] is normally distributed.
In the notation of normal distribution, [tex]\( X \sim N(\mu, \sigma^2) \)[/tex] where:
- [tex]\( \mu \)[/tex] is the mean of the distribution.
- [tex]\( \sigma \)[/tex] is the standard deviation of the distribution.
From the given data:
- [tex]\( \mu = 17 \)[/tex] (mean height)
- [tex]\( \sigma = 1 \)[/tex] (standard deviation)
So, the height [tex]\( X \)[/tex] of a randomly selected adult giraffe follows a normal distribution with a mean of 17 feet and a standard deviation of 1 foot.
Thus, the distribution of [tex]\( X \)[/tex] is:
[tex]\[ X \sim N(17, 1) \][/tex]
To capture the standard deviation squared ([tex]\(\sigma^2\)[/tex]), the notation could more accurately be stated as [tex]\( X \sim N(17, 1^2) \)[/tex], but since [tex]\( 1^2 = 1 \)[/tex], it simplifies nicely to [tex]\( N(17, 1) \)[/tex].
So, the final answer is:
[tex]\[ X \sim N(17, 1) \][/tex]
Given:
- The mean height of an adult giraffe is 17 feet.
- The standard deviation of the height is 1 foot.
- The height [tex]\( X \)[/tex] is normally distributed.
In the notation of normal distribution, [tex]\( X \sim N(\mu, \sigma^2) \)[/tex] where:
- [tex]\( \mu \)[/tex] is the mean of the distribution.
- [tex]\( \sigma \)[/tex] is the standard deviation of the distribution.
From the given data:
- [tex]\( \mu = 17 \)[/tex] (mean height)
- [tex]\( \sigma = 1 \)[/tex] (standard deviation)
So, the height [tex]\( X \)[/tex] of a randomly selected adult giraffe follows a normal distribution with a mean of 17 feet and a standard deviation of 1 foot.
Thus, the distribution of [tex]\( X \)[/tex] is:
[tex]\[ X \sim N(17, 1) \][/tex]
To capture the standard deviation squared ([tex]\(\sigma^2\)[/tex]), the notation could more accurately be stated as [tex]\( X \sim N(17, 1^2) \)[/tex], but since [tex]\( 1^2 = 1 \)[/tex], it simplifies nicely to [tex]\( N(17, 1) \)[/tex].
So, the final answer is:
[tex]\[ X \sim N(17, 1) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.