Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the Z-score for a giraffe that is 18.5 feet tall, we need to use the Z-score formula. The Z-score formula is a way of describing a value's relationship to the mean of a group of values. The formula is given by:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
where:
- [tex]\( Z \)[/tex] is the Z-score,
- [tex]\( X \)[/tex] is the value we're evaluating,
- [tex]\( \mu \)[/tex] is the population mean,
- [tex]\( \sigma \)[/tex] is the population standard deviation.
Here’s the step-by-step process to find the Z-score:
1. Identify the given values:
- The height of the giraffe, [tex]\( X \)[/tex], is 18.5 feet.
- The population mean, [tex]\( \mu \)[/tex], is 16 feet.
- The population standard deviation, [tex]\( \sigma \)[/tex], is 1.8 feet.
2. Substitute the given values into the Z-score formula:
[tex]\[ Z = \frac{18.5 - 16}{1.8} \][/tex]
3. Perform the arithmetic operations:
- Calculate the numerator: [tex]\( 18.5 - 16 = 2.5 \)[/tex]
- Divide this result by the standard deviation: [tex]\( \frac{2.5}{1.8} \approx 1.3888888888888888 \)[/tex]
Hence, the Z-score for a giraffe that is 18.5 feet tall is approximately [tex]\( 1.3888888888888888 \)[/tex]. This means that the giraffe's height is about 1.39 standard deviations above the mean height of the population.
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
where:
- [tex]\( Z \)[/tex] is the Z-score,
- [tex]\( X \)[/tex] is the value we're evaluating,
- [tex]\( \mu \)[/tex] is the population mean,
- [tex]\( \sigma \)[/tex] is the population standard deviation.
Here’s the step-by-step process to find the Z-score:
1. Identify the given values:
- The height of the giraffe, [tex]\( X \)[/tex], is 18.5 feet.
- The population mean, [tex]\( \mu \)[/tex], is 16 feet.
- The population standard deviation, [tex]\( \sigma \)[/tex], is 1.8 feet.
2. Substitute the given values into the Z-score formula:
[tex]\[ Z = \frac{18.5 - 16}{1.8} \][/tex]
3. Perform the arithmetic operations:
- Calculate the numerator: [tex]\( 18.5 - 16 = 2.5 \)[/tex]
- Divide this result by the standard deviation: [tex]\( \frac{2.5}{1.8} \approx 1.3888888888888888 \)[/tex]
Hence, the Z-score for a giraffe that is 18.5 feet tall is approximately [tex]\( 1.3888888888888888 \)[/tex]. This means that the giraffe's height is about 1.39 standard deviations above the mean height of the population.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.