Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To show that [tex]\(\frac{dy}{dx} = 2(1 + y^2)\)[/tex] for [tex]\(y = \tan(2x)\)[/tex], let's go through the solution step by step:
1. Define the function:
Start with [tex]\(y = \tan(2x)\)[/tex].
2. Differentiate the function:
To find the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex], use the chain rule. The chain rule states that if you have a composite function, [tex]\(f(g(x))\)[/tex], then its derivative is [tex]\(f'(g(x)) \cdot g'(x)\)[/tex].
3. Apply the chain rule:
Here, [tex]\(y = \tan(2x)\)[/tex] can be seen as [tex]\(f(g(x))\)[/tex], where [tex]\(f(u) = \tan(u)\)[/tex] and [tex]\(g(x) = 2x\)[/tex].
- First, find the derivative of the outer function [tex]\(f(u) = \tan(u)\)[/tex]. The derivative of [tex]\(\tan(u)\)[/tex] is [tex]\(\sec^2(u)\)[/tex].
- Now, find the derivative of the inner function [tex]\(g(x) = 2x\)[/tex]. The derivative of [tex]\(2x\)[/tex] is [tex]\(2\)[/tex].
Combining these results using the chain rule gives:
[tex]\[ \frac{d}{dx} \tan(2x) = \sec^2(2x) \cdot 2 \][/tex]
4. Simplify the derivative:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
5. Express [tex]\(\sec^2(2x)\)[/tex] in terms of [tex]\(y\)[/tex]:
Recall the trigonometric identity [tex]\(\sec^2(u) = 1 + \tan^2(u)\)[/tex].
- Here, since [tex]\(u = 2x\)[/tex],
[tex]\[ \sec^2(2x) = 1 + \tan^2(2x) \][/tex]
6. Substitute [tex]\(\tan(2x)\)[/tex] with [tex]\(y\)[/tex]:
Given that [tex]\(y = \tan(2x)\)[/tex],
[tex]\[ \sec^2(2x) = 1 + y^2 \][/tex]
7. Put it all together:
Substitute [tex]\(\sec^2(2x)\)[/tex] in the derivative expression we obtained earlier:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
becomes
[tex]\[ \frac{dy}{dx} = 2 (1 + y^2) \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = 2(1 + y^2) \][/tex]
1. Define the function:
Start with [tex]\(y = \tan(2x)\)[/tex].
2. Differentiate the function:
To find the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex], use the chain rule. The chain rule states that if you have a composite function, [tex]\(f(g(x))\)[/tex], then its derivative is [tex]\(f'(g(x)) \cdot g'(x)\)[/tex].
3. Apply the chain rule:
Here, [tex]\(y = \tan(2x)\)[/tex] can be seen as [tex]\(f(g(x))\)[/tex], where [tex]\(f(u) = \tan(u)\)[/tex] and [tex]\(g(x) = 2x\)[/tex].
- First, find the derivative of the outer function [tex]\(f(u) = \tan(u)\)[/tex]. The derivative of [tex]\(\tan(u)\)[/tex] is [tex]\(\sec^2(u)\)[/tex].
- Now, find the derivative of the inner function [tex]\(g(x) = 2x\)[/tex]. The derivative of [tex]\(2x\)[/tex] is [tex]\(2\)[/tex].
Combining these results using the chain rule gives:
[tex]\[ \frac{d}{dx} \tan(2x) = \sec^2(2x) \cdot 2 \][/tex]
4. Simplify the derivative:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
5. Express [tex]\(\sec^2(2x)\)[/tex] in terms of [tex]\(y\)[/tex]:
Recall the trigonometric identity [tex]\(\sec^2(u) = 1 + \tan^2(u)\)[/tex].
- Here, since [tex]\(u = 2x\)[/tex],
[tex]\[ \sec^2(2x) = 1 + \tan^2(2x) \][/tex]
6. Substitute [tex]\(\tan(2x)\)[/tex] with [tex]\(y\)[/tex]:
Given that [tex]\(y = \tan(2x)\)[/tex],
[tex]\[ \sec^2(2x) = 1 + y^2 \][/tex]
7. Put it all together:
Substitute [tex]\(\sec^2(2x)\)[/tex] in the derivative expression we obtained earlier:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
becomes
[tex]\[ \frac{dy}{dx} = 2 (1 + y^2) \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = 2(1 + y^2) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.