Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To show that [tex]\(\frac{dy}{dx} = 2(1 + y^2)\)[/tex] for [tex]\(y = \tan(2x)\)[/tex], let's go through the solution step by step:
1. Define the function:
Start with [tex]\(y = \tan(2x)\)[/tex].
2. Differentiate the function:
To find the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex], use the chain rule. The chain rule states that if you have a composite function, [tex]\(f(g(x))\)[/tex], then its derivative is [tex]\(f'(g(x)) \cdot g'(x)\)[/tex].
3. Apply the chain rule:
Here, [tex]\(y = \tan(2x)\)[/tex] can be seen as [tex]\(f(g(x))\)[/tex], where [tex]\(f(u) = \tan(u)\)[/tex] and [tex]\(g(x) = 2x\)[/tex].
- First, find the derivative of the outer function [tex]\(f(u) = \tan(u)\)[/tex]. The derivative of [tex]\(\tan(u)\)[/tex] is [tex]\(\sec^2(u)\)[/tex].
- Now, find the derivative of the inner function [tex]\(g(x) = 2x\)[/tex]. The derivative of [tex]\(2x\)[/tex] is [tex]\(2\)[/tex].
Combining these results using the chain rule gives:
[tex]\[ \frac{d}{dx} \tan(2x) = \sec^2(2x) \cdot 2 \][/tex]
4. Simplify the derivative:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
5. Express [tex]\(\sec^2(2x)\)[/tex] in terms of [tex]\(y\)[/tex]:
Recall the trigonometric identity [tex]\(\sec^2(u) = 1 + \tan^2(u)\)[/tex].
- Here, since [tex]\(u = 2x\)[/tex],
[tex]\[ \sec^2(2x) = 1 + \tan^2(2x) \][/tex]
6. Substitute [tex]\(\tan(2x)\)[/tex] with [tex]\(y\)[/tex]:
Given that [tex]\(y = \tan(2x)\)[/tex],
[tex]\[ \sec^2(2x) = 1 + y^2 \][/tex]
7. Put it all together:
Substitute [tex]\(\sec^2(2x)\)[/tex] in the derivative expression we obtained earlier:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
becomes
[tex]\[ \frac{dy}{dx} = 2 (1 + y^2) \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = 2(1 + y^2) \][/tex]
1. Define the function:
Start with [tex]\(y = \tan(2x)\)[/tex].
2. Differentiate the function:
To find the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex], use the chain rule. The chain rule states that if you have a composite function, [tex]\(f(g(x))\)[/tex], then its derivative is [tex]\(f'(g(x)) \cdot g'(x)\)[/tex].
3. Apply the chain rule:
Here, [tex]\(y = \tan(2x)\)[/tex] can be seen as [tex]\(f(g(x))\)[/tex], where [tex]\(f(u) = \tan(u)\)[/tex] and [tex]\(g(x) = 2x\)[/tex].
- First, find the derivative of the outer function [tex]\(f(u) = \tan(u)\)[/tex]. The derivative of [tex]\(\tan(u)\)[/tex] is [tex]\(\sec^2(u)\)[/tex].
- Now, find the derivative of the inner function [tex]\(g(x) = 2x\)[/tex]. The derivative of [tex]\(2x\)[/tex] is [tex]\(2\)[/tex].
Combining these results using the chain rule gives:
[tex]\[ \frac{d}{dx} \tan(2x) = \sec^2(2x) \cdot 2 \][/tex]
4. Simplify the derivative:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
5. Express [tex]\(\sec^2(2x)\)[/tex] in terms of [tex]\(y\)[/tex]:
Recall the trigonometric identity [tex]\(\sec^2(u) = 1 + \tan^2(u)\)[/tex].
- Here, since [tex]\(u = 2x\)[/tex],
[tex]\[ \sec^2(2x) = 1 + \tan^2(2x) \][/tex]
6. Substitute [tex]\(\tan(2x)\)[/tex] with [tex]\(y\)[/tex]:
Given that [tex]\(y = \tan(2x)\)[/tex],
[tex]\[ \sec^2(2x) = 1 + y^2 \][/tex]
7. Put it all together:
Substitute [tex]\(\sec^2(2x)\)[/tex] in the derivative expression we obtained earlier:
[tex]\[ \frac{dy}{dx} = 2 \sec^2(2x) \][/tex]
becomes
[tex]\[ \frac{dy}{dx} = 2 (1 + y^2) \][/tex]
Therefore, we have shown that:
[tex]\[ \frac{dy}{dx} = 2(1 + y^2) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.