Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the value of the product [tex]\((3-2i)(3+2i)\)[/tex]?

A. 5
B. [tex]\(9 + 4i\)[/tex]
C. [tex]\(9 - 4i\)[/tex]
D. 13


Sagot :

To find the product [tex]\((3 - 2i)(3 + 2i)\)[/tex], we will use the distributive property of multiplication over addition. Follow these detailed steps:

1. Start by expanding the expression using the distributive property (also known as the FOIL method for binomials):
[tex]\[ (3 - 2i)(3 + 2i) = 3(3) + 3(2i) - 2i(3) - 2i(2i) \][/tex]

2. Multiply the terms:
[tex]\[ = 3 \cdot 3 + 3 \cdot 2i - 2i \cdot 3 - 2i \cdot 2i \][/tex]
[tex]\[ = 9 + 6i - 6i - 4i^2 \][/tex]

3. Notice that [tex]\(6i\)[/tex] and [tex]\(-6i\)[/tex] cancel each other out:
[tex]\[ = 9 - 4i^2 \][/tex]

4. Recall that [tex]\(i^2 = -1\)[/tex]. Therefore, [tex]\(-4i^2\)[/tex] becomes [tex]\(-4(-1)\)[/tex]:
[tex]\[ = 9 + 4 \][/tex]

5. Finally, add the real parts together:
[tex]\[ = 13 \][/tex]

Thus, the value of the product [tex]\((3 - 2i)(3 + 2i)\)[/tex] is [tex]\(13\)[/tex].

So the correct answer is:
[tex]\[ \boxed{13} \][/tex]