Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the product [tex]\((3 - 2i)(3 + 2i)\)[/tex], we will use the distributive property of multiplication over addition. Follow these detailed steps:
1. Start by expanding the expression using the distributive property (also known as the FOIL method for binomials):
[tex]\[ (3 - 2i)(3 + 2i) = 3(3) + 3(2i) - 2i(3) - 2i(2i) \][/tex]
2. Multiply the terms:
[tex]\[ = 3 \cdot 3 + 3 \cdot 2i - 2i \cdot 3 - 2i \cdot 2i \][/tex]
[tex]\[ = 9 + 6i - 6i - 4i^2 \][/tex]
3. Notice that [tex]\(6i\)[/tex] and [tex]\(-6i\)[/tex] cancel each other out:
[tex]\[ = 9 - 4i^2 \][/tex]
4. Recall that [tex]\(i^2 = -1\)[/tex]. Therefore, [tex]\(-4i^2\)[/tex] becomes [tex]\(-4(-1)\)[/tex]:
[tex]\[ = 9 + 4 \][/tex]
5. Finally, add the real parts together:
[tex]\[ = 13 \][/tex]
Thus, the value of the product [tex]\((3 - 2i)(3 + 2i)\)[/tex] is [tex]\(13\)[/tex].
So the correct answer is:
[tex]\[ \boxed{13} \][/tex]
1. Start by expanding the expression using the distributive property (also known as the FOIL method for binomials):
[tex]\[ (3 - 2i)(3 + 2i) = 3(3) + 3(2i) - 2i(3) - 2i(2i) \][/tex]
2. Multiply the terms:
[tex]\[ = 3 \cdot 3 + 3 \cdot 2i - 2i \cdot 3 - 2i \cdot 2i \][/tex]
[tex]\[ = 9 + 6i - 6i - 4i^2 \][/tex]
3. Notice that [tex]\(6i\)[/tex] and [tex]\(-6i\)[/tex] cancel each other out:
[tex]\[ = 9 - 4i^2 \][/tex]
4. Recall that [tex]\(i^2 = -1\)[/tex]. Therefore, [tex]\(-4i^2\)[/tex] becomes [tex]\(-4(-1)\)[/tex]:
[tex]\[ = 9 + 4 \][/tex]
5. Finally, add the real parts together:
[tex]\[ = 13 \][/tex]
Thus, the value of the product [tex]\((3 - 2i)(3 + 2i)\)[/tex] is [tex]\(13\)[/tex].
So the correct answer is:
[tex]\[ \boxed{13} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.