Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's work through this problem step-by-step.
1. Identify the given current [tex]\(I\)[/tex]:
[tex]\[ I = 3 + 2 \][/tex]
Here, the current [tex]\(I\)[/tex] is initially given as [tex]\(3 + 2\)[/tex].
2. Calculate the resistance [tex]\(Z\)[/tex] using the given relationship:
[tex]\[ Z = 2 - I \][/tex]
Substituting the given value of [tex]\(I\)[/tex]:
[tex]\[ Z = 2 - (3 + 2) = 2 - 5 = -3 \][/tex]
So, the resistance [tex]\(Z\)[/tex] is [tex]\(-3\)[/tex].
3. Calculate the voltage [tex]\(E\)[/tex] using the formula [tex]\(E = I \cdot Z\)[/tex]:
Substitute the calculated values of [tex]\(I\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ E = (3 + 2) \cdot (-3) \][/tex]
4. Express [tex]\(I\)[/tex] in terms of its real and imaginary parts (since we're given [tex]\(I\)[/tex] to be [tex]\(3 + 2\)[/tex], where 2 is understood to be the imaginary part here):
[tex]\[ I = 5 \text{ (no imaginary part since it simplifies to a real number)} \][/tex]
5. Calculate the voltage [tex]\(E\)[/tex], now as the product of real and imaginary parts:
For the real part:
[tex]\[ E_{\text{real}} = 5 \cdot (-3) = -15 \][/tex]
For the imaginary part:
[tex]\[ E_{\text{imag}} = 0 \text{ (since there is no imaginary part in \(I\))} \][/tex]
6. Combine the results:
[tex]\[ E = -15 + 0j \][/tex]
Thus, the voltage [tex]\(E\)[/tex] is [tex]\(-15 + 0j\)[/tex], which is simply [tex]\(-15\)[/tex] when considering only the real number scenario. No imaginary part is present here.
So, the answer to the question is:
[tex]\[ \text{The voltage of the circuit is } -15 \][/tex]
1. Identify the given current [tex]\(I\)[/tex]:
[tex]\[ I = 3 + 2 \][/tex]
Here, the current [tex]\(I\)[/tex] is initially given as [tex]\(3 + 2\)[/tex].
2. Calculate the resistance [tex]\(Z\)[/tex] using the given relationship:
[tex]\[ Z = 2 - I \][/tex]
Substituting the given value of [tex]\(I\)[/tex]:
[tex]\[ Z = 2 - (3 + 2) = 2 - 5 = -3 \][/tex]
So, the resistance [tex]\(Z\)[/tex] is [tex]\(-3\)[/tex].
3. Calculate the voltage [tex]\(E\)[/tex] using the formula [tex]\(E = I \cdot Z\)[/tex]:
Substitute the calculated values of [tex]\(I\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ E = (3 + 2) \cdot (-3) \][/tex]
4. Express [tex]\(I\)[/tex] in terms of its real and imaginary parts (since we're given [tex]\(I\)[/tex] to be [tex]\(3 + 2\)[/tex], where 2 is understood to be the imaginary part here):
[tex]\[ I = 5 \text{ (no imaginary part since it simplifies to a real number)} \][/tex]
5. Calculate the voltage [tex]\(E\)[/tex], now as the product of real and imaginary parts:
For the real part:
[tex]\[ E_{\text{real}} = 5 \cdot (-3) = -15 \][/tex]
For the imaginary part:
[tex]\[ E_{\text{imag}} = 0 \text{ (since there is no imaginary part in \(I\))} \][/tex]
6. Combine the results:
[tex]\[ E = -15 + 0j \][/tex]
Thus, the voltage [tex]\(E\)[/tex] is [tex]\(-15 + 0j\)[/tex], which is simply [tex]\(-15\)[/tex] when considering only the real number scenario. No imaginary part is present here.
So, the answer to the question is:
[tex]\[ \text{The voltage of the circuit is } -15 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.