Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

In a species of plant, the allele for tall plants, [tex]$T$[/tex], is dominant over the allele for short plants, [tex]$t$[/tex]. The table shows the distribution of genotypes in a population of plants.

\begin{tabular}{|l|l|l|}
\hline Genotype & Phenotype & \begin{tabular}{l}
Number of \\
individuals
\end{tabular} \\
\hline [tex]$T T$[/tex] & Tall & 28 \\
\hline [tex]$T t$[/tex] & Tall & 46 \\
\hline [tex]$t t$[/tex] & Short & 26 \\
\hline
\end{tabular}

What is the frequency of the [tex]$T$[/tex] allele?

Hint: There are a total of 200 alleles for this gene in the population.

A. 0.28

B. 0.37

C. 0.74

D. 0.51

Sagot :

To determine the frequency of the [tex]\( T \)[/tex] allele in the population, we need to follow these steps:

1. Identify the frequency of each genotype:

- Tall homozygous ([tex]\( TT \)[/tex]): 28 individuals
- Tall heterozygous ([tex]\( Tt \)[/tex]): 46 individuals
- Short homozygous ([tex]\( tt \)[/tex]): 26 individuals

2. Calculate the total number of individuals in the population:

[tex]\[ \text{Total number of individuals} = 28 + 46 + 26 = 100 \][/tex]

3. Determine the total number of alleles in the population:

Each individual has 2 alleles so:

[tex]\[ \text{Total number of alleles} = 100 \times 2 = 200 \][/tex]

4. Calculate the total number of [tex]\( T \)[/tex] alleles:

- Each [tex]\( TT \)[/tex] individual contributes 2 [tex]\( T \)[/tex] alleles. Since there are 28 [tex]\( TT \)[/tex] individuals:

[tex]\[ \text{Number of } T \text{ alleles from } TT \text{ individuals} = 28 \times 2 = 56 \][/tex]

- Each [tex]\( Tt \)[/tex] individual contributes 1 [tex]\( T \)[/tex] allele. Since there are 46 [tex]\( Tt \)[/tex] individuals:

[tex]\[ \text{Number of } T \text{ alleles from } Tt \text{ individuals} = 46 \times 1 = 46 \][/tex]

- [tex]\( tt \)[/tex] individuals contribute 0 [tex]\( T \)[/tex] alleles.

5. Sum the total number of [tex]\( T \)[/tex] alleles:

[tex]\[ \text{Total number of } T \text{ alleles} = 56 + 46 = 102 \][/tex]

6. Calculate the frequency of the [tex]\( T \)[/tex] allele:

The frequency of an allele is the number of that allele in the population divided by the total number of alleles.

[tex]\[ \text{Frequency of } T \text{ allele} = \frac{\text{Number of } T \text{ alleles}}{\text{Total number of alleles}} = \frac{102}{200} = 0.51 \][/tex]

Therefore, the frequency of the [tex]\( T \)[/tex] allele in this population is [tex]\( 0.51 \)[/tex].

The correct answer is:

D. [tex]\( 0.51 \)[/tex]