Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we need to solve this as a linear programming problem. Let’s follow these steps:
1. Identify the objective function and constraints:
- Objective function: [tex]\(P = 4x + 2y\)[/tex]
- Constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
2. Graph the constraints:
- Plot the line [tex]\(x + 2y = 10\)[/tex]. This will be a boundary line.
- Plot the horizontal line [tex]\(y = 2\)[/tex].
- Add the non-negativity constraints [tex]\(x \geq 0\)[/tex] and [tex]\(y \geq 0\)[/tex].
3. Determine the feasible region:
- The feasible region is the area where all constraints overlap and it lies in the first quadrant (both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are non-negative).
4. Identify the corner points of the feasible region:
- The boundary line [tex]\(x + 2y = 10\)[/tex] intersects the [tex]\(y\)[/tex]-axis at [tex]\( (0, 5) \)[/tex].
- The line [tex]\(y = 2\)[/tex] intersects the [tex]\(x + 2y = 10\)[/tex] line at [tex]\(x = 10 - 2y \Rightarrow x = 10 - 2(2) = 6\)[/tex], giving us the point [tex]\((6, 2)\)[/tex].
The points to be checked are:
- Intersection of [tex]\(x + 2y = 10\)[/tex] and [tex]\(y = 2\)[/tex] [tex]\(\Rightarrow (6, 2)\)[/tex]
- [tex]\(x\)[/tex]-axis and [tex]\(x + 2y = 10\)[/tex] [tex]\(\Rightarrow (10, 0)\)[/tex]
- Intersections with the constraints of non-negativity which are [tex]\((0, 0)\)[/tex] and [tex]\((0, 5)\)[/tex].
5. Evaluate the objective function at these points:
- [tex]\(P(0, 0) = 4(0) + 2(0) = 0\)[/tex]
- [tex]\(P(6, 2) = 4(6) + 2(2) = 24 + 4 = 28\)[/tex]
- [tex]\(P(10, 0) = 4(10) + 2(0) = 40\)[/tex]
- [tex]\(P(0, 5) = 4(0) + 2(5) = 10\)[/tex]
6. Determine the maximum value:
Among these corner points, the maximum value of [tex]\(P\)[/tex] is [tex]\(40\)[/tex], which occurs at the point [tex]\((10, 0)\)[/tex].
Thus, the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints is [tex]\(\boxed{40}\)[/tex].
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we need to solve this as a linear programming problem. Let’s follow these steps:
1. Identify the objective function and constraints:
- Objective function: [tex]\(P = 4x + 2y\)[/tex]
- Constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
2. Graph the constraints:
- Plot the line [tex]\(x + 2y = 10\)[/tex]. This will be a boundary line.
- Plot the horizontal line [tex]\(y = 2\)[/tex].
- Add the non-negativity constraints [tex]\(x \geq 0\)[/tex] and [tex]\(y \geq 0\)[/tex].
3. Determine the feasible region:
- The feasible region is the area where all constraints overlap and it lies in the first quadrant (both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are non-negative).
4. Identify the corner points of the feasible region:
- The boundary line [tex]\(x + 2y = 10\)[/tex] intersects the [tex]\(y\)[/tex]-axis at [tex]\( (0, 5) \)[/tex].
- The line [tex]\(y = 2\)[/tex] intersects the [tex]\(x + 2y = 10\)[/tex] line at [tex]\(x = 10 - 2y \Rightarrow x = 10 - 2(2) = 6\)[/tex], giving us the point [tex]\((6, 2)\)[/tex].
The points to be checked are:
- Intersection of [tex]\(x + 2y = 10\)[/tex] and [tex]\(y = 2\)[/tex] [tex]\(\Rightarrow (6, 2)\)[/tex]
- [tex]\(x\)[/tex]-axis and [tex]\(x + 2y = 10\)[/tex] [tex]\(\Rightarrow (10, 0)\)[/tex]
- Intersections with the constraints of non-negativity which are [tex]\((0, 0)\)[/tex] and [tex]\((0, 5)\)[/tex].
5. Evaluate the objective function at these points:
- [tex]\(P(0, 0) = 4(0) + 2(0) = 0\)[/tex]
- [tex]\(P(6, 2) = 4(6) + 2(2) = 24 + 4 = 28\)[/tex]
- [tex]\(P(10, 0) = 4(10) + 2(0) = 40\)[/tex]
- [tex]\(P(0, 5) = 4(0) + 2(5) = 10\)[/tex]
6. Determine the maximum value:
Among these corner points, the maximum value of [tex]\(P\)[/tex] is [tex]\(40\)[/tex], which occurs at the point [tex]\((10, 0)\)[/tex].
Thus, the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints is [tex]\(\boxed{40}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.