Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we need to solve this as a linear programming problem. Let’s follow these steps:
1. Identify the objective function and constraints:
- Objective function: [tex]\(P = 4x + 2y\)[/tex]
- Constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
2. Graph the constraints:
- Plot the line [tex]\(x + 2y = 10\)[/tex]. This will be a boundary line.
- Plot the horizontal line [tex]\(y = 2\)[/tex].
- Add the non-negativity constraints [tex]\(x \geq 0\)[/tex] and [tex]\(y \geq 0\)[/tex].
3. Determine the feasible region:
- The feasible region is the area where all constraints overlap and it lies in the first quadrant (both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are non-negative).
4. Identify the corner points of the feasible region:
- The boundary line [tex]\(x + 2y = 10\)[/tex] intersects the [tex]\(y\)[/tex]-axis at [tex]\( (0, 5) \)[/tex].
- The line [tex]\(y = 2\)[/tex] intersects the [tex]\(x + 2y = 10\)[/tex] line at [tex]\(x = 10 - 2y \Rightarrow x = 10 - 2(2) = 6\)[/tex], giving us the point [tex]\((6, 2)\)[/tex].
The points to be checked are:
- Intersection of [tex]\(x + 2y = 10\)[/tex] and [tex]\(y = 2\)[/tex] [tex]\(\Rightarrow (6, 2)\)[/tex]
- [tex]\(x\)[/tex]-axis and [tex]\(x + 2y = 10\)[/tex] [tex]\(\Rightarrow (10, 0)\)[/tex]
- Intersections with the constraints of non-negativity which are [tex]\((0, 0)\)[/tex] and [tex]\((0, 5)\)[/tex].
5. Evaluate the objective function at these points:
- [tex]\(P(0, 0) = 4(0) + 2(0) = 0\)[/tex]
- [tex]\(P(6, 2) = 4(6) + 2(2) = 24 + 4 = 28\)[/tex]
- [tex]\(P(10, 0) = 4(10) + 2(0) = 40\)[/tex]
- [tex]\(P(0, 5) = 4(0) + 2(5) = 10\)[/tex]
6. Determine the maximum value:
Among these corner points, the maximum value of [tex]\(P\)[/tex] is [tex]\(40\)[/tex], which occurs at the point [tex]\((10, 0)\)[/tex].
Thus, the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints is [tex]\(\boxed{40}\)[/tex].
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we need to solve this as a linear programming problem. Let’s follow these steps:
1. Identify the objective function and constraints:
- Objective function: [tex]\(P = 4x + 2y\)[/tex]
- Constraints:
[tex]\[ \begin{array}{l} x + 2y \leq 10 \\ y \leq 2 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
2. Graph the constraints:
- Plot the line [tex]\(x + 2y = 10\)[/tex]. This will be a boundary line.
- Plot the horizontal line [tex]\(y = 2\)[/tex].
- Add the non-negativity constraints [tex]\(x \geq 0\)[/tex] and [tex]\(y \geq 0\)[/tex].
3. Determine the feasible region:
- The feasible region is the area where all constraints overlap and it lies in the first quadrant (both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are non-negative).
4. Identify the corner points of the feasible region:
- The boundary line [tex]\(x + 2y = 10\)[/tex] intersects the [tex]\(y\)[/tex]-axis at [tex]\( (0, 5) \)[/tex].
- The line [tex]\(y = 2\)[/tex] intersects the [tex]\(x + 2y = 10\)[/tex] line at [tex]\(x = 10 - 2y \Rightarrow x = 10 - 2(2) = 6\)[/tex], giving us the point [tex]\((6, 2)\)[/tex].
The points to be checked are:
- Intersection of [tex]\(x + 2y = 10\)[/tex] and [tex]\(y = 2\)[/tex] [tex]\(\Rightarrow (6, 2)\)[/tex]
- [tex]\(x\)[/tex]-axis and [tex]\(x + 2y = 10\)[/tex] [tex]\(\Rightarrow (10, 0)\)[/tex]
- Intersections with the constraints of non-negativity which are [tex]\((0, 0)\)[/tex] and [tex]\((0, 5)\)[/tex].
5. Evaluate the objective function at these points:
- [tex]\(P(0, 0) = 4(0) + 2(0) = 0\)[/tex]
- [tex]\(P(6, 2) = 4(6) + 2(2) = 24 + 4 = 28\)[/tex]
- [tex]\(P(10, 0) = 4(10) + 2(0) = 40\)[/tex]
- [tex]\(P(0, 5) = 4(0) + 2(5) = 10\)[/tex]
6. Determine the maximum value:
Among these corner points, the maximum value of [tex]\(P\)[/tex] is [tex]\(40\)[/tex], which occurs at the point [tex]\((10, 0)\)[/tex].
Thus, the maximum value of [tex]\(P = 4x + 2y\)[/tex] given the constraints is [tex]\(\boxed{40}\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.