Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the polynomial [tex]\( g(x) = 2x^4 - 5x^3 + 3x^2 - 2x + 1 \)[/tex] has any local minima or maxima, we follow these steps:
1. Find the first derivative [tex]\( g'(x) \)[/tex]:
This will help identify the critical points where the function's slope is zero.
[tex]\[ g'(x) = \frac{d}{dx}(2x^4 - 5x^3 + 3x^2 - 2x + 1) = 8x^3 - 15x^2 + 6x - 2 \][/tex]
2. Solve [tex]\( g'(x) = 0 \)[/tex] to find critical points:
We solve the equation [tex]\( 8x^3 - 15x^2 + 6x - 2 = 0 \)[/tex] to find the critical points. The roots of this equation are the critical points. The solutions to this polynomial are:
[tex]\[ x_1 = \frac{5}{8} + \left( -\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} + \frac{9}{64 \left( -\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} \][/tex]
[tex]\[ x_2 = \frac{5}{8} + \frac{9}{64 \left( -\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} + \left( -\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} \][/tex]
[tex]\[ x_3 = \frac{9}{64 \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} + \frac{5}{8} + \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} \][/tex]
3. Determine whether each critical point corresponds to a local maxima, minima, or neither:
To classify the critical points, we need to evaluate the second derivative [tex]\( g''(x) \)[/tex] at these points.
[tex]\[ g''(x) = \frac{d}{dx}(8x^3 - 15x^2 + 6x - 2) = 24x^2 - 30x + 6 \][/tex]
4. Evaluate [tex]\( g''(x) \)[/tex] at each critical point:
- At [tex]\( x_1 \)[/tex], [tex]\( g''(x_1) = -2.08248441322538 + 7.42836007216895i \)[/tex]
- At [tex]\( x_2 \)[/tex], [tex]\( g''(x_2) = -2.08248441322538 - 7.42836007216895i \)[/tex]
- At [tex]\( x_3 \)[/tex], [tex]\( g''(x_3) = 14.2899688264508 \)[/tex]
From these evaluations:
- Since [tex]\( g''(x_3) = 14.2899688264508 > 0 \)[/tex], [tex]\( x_3 \)[/tex] is a local minimum because a positive second derivative indicates that the function is concave up at this point.
- [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] have complex values for their second derivatives, implying that these critical points are complex and thus not relevant for local minima or maxima in the real domain.
Hence, the polynomial function [tex]\( g(x) = 2x^4 - 5x^3 + 3x^2 - 2x + 1 \)[/tex] has a local minimum, not maxima.
Therefore, the correct answer is:
a. It has a local minima at approximately [tex]\( 1.65 \)[/tex].
1. Find the first derivative [tex]\( g'(x) \)[/tex]:
This will help identify the critical points where the function's slope is zero.
[tex]\[ g'(x) = \frac{d}{dx}(2x^4 - 5x^3 + 3x^2 - 2x + 1) = 8x^3 - 15x^2 + 6x - 2 \][/tex]
2. Solve [tex]\( g'(x) = 0 \)[/tex] to find critical points:
We solve the equation [tex]\( 8x^3 - 15x^2 + 6x - 2 = 0 \)[/tex] to find the critical points. The roots of this equation are the critical points. The solutions to this polynomial are:
[tex]\[ x_1 = \frac{5}{8} + \left( -\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} + \frac{9}{64 \left( -\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} \][/tex]
[tex]\[ x_2 = \frac{5}{8} + \frac{9}{64 \left( -\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} + \left( -\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} \][/tex]
[tex]\[ x_3 = \frac{9}{64 \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3}} + \frac{5}{8} + \left( \frac{3\sqrt{7}}{64} + \frac{69}{512} \right)^{1/3} \][/tex]
3. Determine whether each critical point corresponds to a local maxima, minima, or neither:
To classify the critical points, we need to evaluate the second derivative [tex]\( g''(x) \)[/tex] at these points.
[tex]\[ g''(x) = \frac{d}{dx}(8x^3 - 15x^2 + 6x - 2) = 24x^2 - 30x + 6 \][/tex]
4. Evaluate [tex]\( g''(x) \)[/tex] at each critical point:
- At [tex]\( x_1 \)[/tex], [tex]\( g''(x_1) = -2.08248441322538 + 7.42836007216895i \)[/tex]
- At [tex]\( x_2 \)[/tex], [tex]\( g''(x_2) = -2.08248441322538 - 7.42836007216895i \)[/tex]
- At [tex]\( x_3 \)[/tex], [tex]\( g''(x_3) = 14.2899688264508 \)[/tex]
From these evaluations:
- Since [tex]\( g''(x_3) = 14.2899688264508 > 0 \)[/tex], [tex]\( x_3 \)[/tex] is a local minimum because a positive second derivative indicates that the function is concave up at this point.
- [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] have complex values for their second derivatives, implying that these critical points are complex and thus not relevant for local minima or maxima in the real domain.
Hence, the polynomial function [tex]\( g(x) = 2x^4 - 5x^3 + 3x^2 - 2x + 1 \)[/tex] has a local minimum, not maxima.
Therefore, the correct answer is:
a. It has a local minima at approximately [tex]\( 1.65 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.