Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The function [tex]\( f(x) = 9^x - 8 \)[/tex] can be derived from the function [tex]\( g(x) = 9^x \)[/tex] by applying a transformation. Here's how we can analyze the situation step-by-step:
### Transformation for the Graph
In the function [tex]\( f(x) = 9^x - 8 \)[/tex], the term [tex]\(-8\)[/tex] indicates a vertical shift downward by 8 units. The value of the function [tex]\( f(x) \)[/tex] is the same as [tex]\( g(x) \)[/tex] but decreased by a constant value of 8 for any given [tex]\( x \)[/tex]. Hence:
- The correct answer for the transformation is:
[tex]\[ (d) \text{ shifting the graph of } g(x) \text{ downward 8 units} \][/tex]
Your answer: [tex]\( \boxed{d} \)[/tex]
### Domain of the Function
The domain of [tex]\( g(x) = 9^x \)[/tex] is all real numbers, [tex]\( (-\infty, \infty) \)[/tex]. Subtracting 8 from [tex]\( g(x) \)[/tex] does not affect the domain, hence the domain of [tex]\( f(x) = 9^x - 8 \)[/tex]:
- The domain remains [tex]\( (-\infty, \infty) \)[/tex].
Your answer: [tex]\( \boxed{Yes} \)[/tex]
### Range of the Function
For the function [tex]\( g(x) = 9^x \)[/tex], the range is [tex]\( (0, \infty) \)[/tex] since [tex]\( 9^x \)[/tex] is always positive for any real number [tex]\( x \)[/tex].
When we transform [tex]\( g(x) \)[/tex] by subtracting 8 to form [tex]\( f(x) \)[/tex], the range shifts accordingly. Since the smallest value [tex]\( g(x) \)[/tex] can approach is 0 (but not including 0), the smallest value [tex]\( f(x) \)[/tex] will approach is [tex]\( 0 - 8 = -8 \)[/tex]. Therefore, the range of [tex]\( f(x) \)[/tex] becomes [tex]\( (-8, \infty) \)[/tex].
- The minimum value, [tex]\( A \)[/tex], in the range [tex]\( (A, \infty) \)[/tex] is:
[tex]\[ A = -8 \][/tex]
Your answer: [tex]\( \boxed{-8} \)[/tex]
### Transformation for the Graph
In the function [tex]\( f(x) = 9^x - 8 \)[/tex], the term [tex]\(-8\)[/tex] indicates a vertical shift downward by 8 units. The value of the function [tex]\( f(x) \)[/tex] is the same as [tex]\( g(x) \)[/tex] but decreased by a constant value of 8 for any given [tex]\( x \)[/tex]. Hence:
- The correct answer for the transformation is:
[tex]\[ (d) \text{ shifting the graph of } g(x) \text{ downward 8 units} \][/tex]
Your answer: [tex]\( \boxed{d} \)[/tex]
### Domain of the Function
The domain of [tex]\( g(x) = 9^x \)[/tex] is all real numbers, [tex]\( (-\infty, \infty) \)[/tex]. Subtracting 8 from [tex]\( g(x) \)[/tex] does not affect the domain, hence the domain of [tex]\( f(x) = 9^x - 8 \)[/tex]:
- The domain remains [tex]\( (-\infty, \infty) \)[/tex].
Your answer: [tex]\( \boxed{Yes} \)[/tex]
### Range of the Function
For the function [tex]\( g(x) = 9^x \)[/tex], the range is [tex]\( (0, \infty) \)[/tex] since [tex]\( 9^x \)[/tex] is always positive for any real number [tex]\( x \)[/tex].
When we transform [tex]\( g(x) \)[/tex] by subtracting 8 to form [tex]\( f(x) \)[/tex], the range shifts accordingly. Since the smallest value [tex]\( g(x) \)[/tex] can approach is 0 (but not including 0), the smallest value [tex]\( f(x) \)[/tex] will approach is [tex]\( 0 - 8 = -8 \)[/tex]. Therefore, the range of [tex]\( f(x) \)[/tex] becomes [tex]\( (-8, \infty) \)[/tex].
- The minimum value, [tex]\( A \)[/tex], in the range [tex]\( (A, \infty) \)[/tex] is:
[tex]\[ A = -8 \][/tex]
Your answer: [tex]\( \boxed{-8} \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.