At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the inequality [tex]\(|3x - 5| < x + 2\)[/tex] step by step.
### Understanding the Inequality
First, recall that the absolute value inequality [tex]\(|A| < B\)[/tex] can be split into two separate inequalities:
[tex]\[ -B < A < B \][/tex]
In our case, [tex]\(A = 3x - 5\)[/tex] and [tex]\(B = x + 2\)[/tex]. Thus, we have:
[tex]\[ -(x + 2) < 3x - 5 < x + 2 \][/tex]
### Splitting into Two Inequalities
Let's solve each part of the inequality separately.
#### 1. Solving [tex]\(-(x + 2) < 3x - 5\)[/tex]
Starting with the left part:
[tex]\[ -(x + 2) < 3x - 5 \][/tex]
[tex]\[ -x - 2 < 3x - 5 \][/tex]
Add [tex]\(x\)[/tex] to both sides:
[tex]\[ -2 < 4x - 5 \][/tex]
Add 5 to both sides:
[tex]\[ 3 < 4x \][/tex]
Divide both sides by 4:
[tex]\[ \frac{3}{4} < x \][/tex]
Or:
[tex]\[ x > \frac{3}{4} \][/tex]
#### 2. Solving [tex]\(3x - 5 < x + 2\)[/tex]
Now for the right part:
[tex]\[ 3x - 5 < x + 2 \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2x - 5 < 2 \][/tex]
Add 5 to both sides:
[tex]\[ 2x < 7 \][/tex]
Divide both sides by 2:
[tex]\[ x < \frac{7}{2} \][/tex]
### Combining the Solutions
We need [tex]\(x\)[/tex] to satisfy both inequalities simultaneously:
[tex]\[ \frac{3}{4} < x < \frac{7}{2} \][/tex]
### Solution in Set Builder Notation
So, the solution to the inequality [tex]\(|3x - 5| < x + 2\)[/tex] is:
[tex]\[ \left\{ x \in \mathbb{R} \; | \; \frac{3}{4} < x < \frac{7}{2} \right\} \][/tex]
### Understanding the Inequality
First, recall that the absolute value inequality [tex]\(|A| < B\)[/tex] can be split into two separate inequalities:
[tex]\[ -B < A < B \][/tex]
In our case, [tex]\(A = 3x - 5\)[/tex] and [tex]\(B = x + 2\)[/tex]. Thus, we have:
[tex]\[ -(x + 2) < 3x - 5 < x + 2 \][/tex]
### Splitting into Two Inequalities
Let's solve each part of the inequality separately.
#### 1. Solving [tex]\(-(x + 2) < 3x - 5\)[/tex]
Starting with the left part:
[tex]\[ -(x + 2) < 3x - 5 \][/tex]
[tex]\[ -x - 2 < 3x - 5 \][/tex]
Add [tex]\(x\)[/tex] to both sides:
[tex]\[ -2 < 4x - 5 \][/tex]
Add 5 to both sides:
[tex]\[ 3 < 4x \][/tex]
Divide both sides by 4:
[tex]\[ \frac{3}{4} < x \][/tex]
Or:
[tex]\[ x > \frac{3}{4} \][/tex]
#### 2. Solving [tex]\(3x - 5 < x + 2\)[/tex]
Now for the right part:
[tex]\[ 3x - 5 < x + 2 \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2x - 5 < 2 \][/tex]
Add 5 to both sides:
[tex]\[ 2x < 7 \][/tex]
Divide both sides by 2:
[tex]\[ x < \frac{7}{2} \][/tex]
### Combining the Solutions
We need [tex]\(x\)[/tex] to satisfy both inequalities simultaneously:
[tex]\[ \frac{3}{4} < x < \frac{7}{2} \][/tex]
### Solution in Set Builder Notation
So, the solution to the inequality [tex]\(|3x - 5| < x + 2\)[/tex] is:
[tex]\[ \left\{ x \in \mathbb{R} \; | \; \frac{3}{4} < x < \frac{7}{2} \right\} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.