Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Determine the velocity of a particle that starts from rest, given its acceleration at time [tex]\( t \)[/tex] as [tex]\( \vec{a} = \cos(t) \, \hat{i} + \sin(t) \, \hat{j} + 3t \, \hat{k} \)[/tex].

Sagot :

To determine the velocity of a particle given its acceleration vector [tex]\(\vec{a}\)[/tex], we need to integrate the acceleration with respect to time. Here, the acceleration vector is provided as:
[tex]\[ \vec{a} = \cos(t) \vec{i} + \sin(t) \vec{j} + 3t \vec{k} \][/tex]

Given that the particle starts from rest, the initial velocity vector [tex]\(\vec{v}(0) = 0\)[/tex].

### Step-by-Step Solution:

1. Express the components of acceleration:
- [tex]\(a_x = \cos(t)\)[/tex]
- [tex]\(a_y = \sin(t)\)[/tex]
- [tex]\(a_z = 3t\)[/tex]

2. Integrate each component of the acceleration with respect to [tex]\(t\)[/tex] to find the components of the velocity:

- The [tex]\(x\)[/tex]-component of velocity:
[tex]\[ v_x(t) = \int \cos(t) \, dt \][/tex]

- The [tex]\(y\)[/tex]-component of velocity:
[tex]\[ v_y(t) = \int \sin(t) \, dt \][/tex]

- The [tex]\(z\)[/tex]-component of velocity:
[tex]\[ v_z(t) = \int 3t \, dt \][/tex]

3. Compute each integral:

- For [tex]\(v_x(t)\)[/tex]:
[tex]\[ v_x(t) = \int \cos(t) \, dt = \sin(t) + C_1 \][/tex]

- For [tex]\(v_y(t)\)[/tex]:
[tex]\[ v_y(t) = \int \sin(t) \, dt = -\cos(t) + C_2 \][/tex]

- For [tex]\(v_z(t)\)[/tex]:
[tex]\[ v_z(t) = \int 3t \, dt = \frac{3t^2}{2} + C_3 \][/tex]

4. Apply the initial condition ([tex]\(\vec{v}(0) = 0\)[/tex]) to find the constants of integration [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex]:

- When [tex]\(t = 0\)[/tex]:
[tex]\[ 0 = \sin(0) + C_1 \implies C_1 = 0 \][/tex]
[tex]\[ 0 = -\cos(0) + C_2 \implies C_2 = 1 \][/tex]
[tex]\[ 0 = \frac{3 \cdot 0^2}{2} + C_3 \implies C_3 = 0 \][/tex]

5. Substitute the constants back into the velocity components:

- [tex]\(v_x(t) = \sin(t)\)[/tex]
- [tex]\(v_y(t) = -\cos(t) + 1\)[/tex]
- [tex]\(v_z(t) = \frac{3t^2}{2}\)[/tex]

6. Combine the components to form the velocity vector [tex]\(\vec{v}(t)\)[/tex]:
[tex]\[ \vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k} \][/tex]

### Final Answer:
The velocity of the particle as a function of time [tex]\(t\)[/tex], given that it starts from rest, is:
[tex]\[ \boxed{\vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k}} \][/tex]