Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the velocity of a particle given its acceleration vector [tex]\(\vec{a}\)[/tex], we need to integrate the acceleration with respect to time. Here, the acceleration vector is provided as:
[tex]\[ \vec{a} = \cos(t) \vec{i} + \sin(t) \vec{j} + 3t \vec{k} \][/tex]
Given that the particle starts from rest, the initial velocity vector [tex]\(\vec{v}(0) = 0\)[/tex].
### Step-by-Step Solution:
1. Express the components of acceleration:
- [tex]\(a_x = \cos(t)\)[/tex]
- [tex]\(a_y = \sin(t)\)[/tex]
- [tex]\(a_z = 3t\)[/tex]
2. Integrate each component of the acceleration with respect to [tex]\(t\)[/tex] to find the components of the velocity:
- The [tex]\(x\)[/tex]-component of velocity:
[tex]\[ v_x(t) = \int \cos(t) \, dt \][/tex]
- The [tex]\(y\)[/tex]-component of velocity:
[tex]\[ v_y(t) = \int \sin(t) \, dt \][/tex]
- The [tex]\(z\)[/tex]-component of velocity:
[tex]\[ v_z(t) = \int 3t \, dt \][/tex]
3. Compute each integral:
- For [tex]\(v_x(t)\)[/tex]:
[tex]\[ v_x(t) = \int \cos(t) \, dt = \sin(t) + C_1 \][/tex]
- For [tex]\(v_y(t)\)[/tex]:
[tex]\[ v_y(t) = \int \sin(t) \, dt = -\cos(t) + C_2 \][/tex]
- For [tex]\(v_z(t)\)[/tex]:
[tex]\[ v_z(t) = \int 3t \, dt = \frac{3t^2}{2} + C_3 \][/tex]
4. Apply the initial condition ([tex]\(\vec{v}(0) = 0\)[/tex]) to find the constants of integration [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex]:
- When [tex]\(t = 0\)[/tex]:
[tex]\[ 0 = \sin(0) + C_1 \implies C_1 = 0 \][/tex]
[tex]\[ 0 = -\cos(0) + C_2 \implies C_2 = 1 \][/tex]
[tex]\[ 0 = \frac{3 \cdot 0^2}{2} + C_3 \implies C_3 = 0 \][/tex]
5. Substitute the constants back into the velocity components:
- [tex]\(v_x(t) = \sin(t)\)[/tex]
- [tex]\(v_y(t) = -\cos(t) + 1\)[/tex]
- [tex]\(v_z(t) = \frac{3t^2}{2}\)[/tex]
6. Combine the components to form the velocity vector [tex]\(\vec{v}(t)\)[/tex]:
[tex]\[ \vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k} \][/tex]
### Final Answer:
The velocity of the particle as a function of time [tex]\(t\)[/tex], given that it starts from rest, is:
[tex]\[ \boxed{\vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k}} \][/tex]
[tex]\[ \vec{a} = \cos(t) \vec{i} + \sin(t) \vec{j} + 3t \vec{k} \][/tex]
Given that the particle starts from rest, the initial velocity vector [tex]\(\vec{v}(0) = 0\)[/tex].
### Step-by-Step Solution:
1. Express the components of acceleration:
- [tex]\(a_x = \cos(t)\)[/tex]
- [tex]\(a_y = \sin(t)\)[/tex]
- [tex]\(a_z = 3t\)[/tex]
2. Integrate each component of the acceleration with respect to [tex]\(t\)[/tex] to find the components of the velocity:
- The [tex]\(x\)[/tex]-component of velocity:
[tex]\[ v_x(t) = \int \cos(t) \, dt \][/tex]
- The [tex]\(y\)[/tex]-component of velocity:
[tex]\[ v_y(t) = \int \sin(t) \, dt \][/tex]
- The [tex]\(z\)[/tex]-component of velocity:
[tex]\[ v_z(t) = \int 3t \, dt \][/tex]
3. Compute each integral:
- For [tex]\(v_x(t)\)[/tex]:
[tex]\[ v_x(t) = \int \cos(t) \, dt = \sin(t) + C_1 \][/tex]
- For [tex]\(v_y(t)\)[/tex]:
[tex]\[ v_y(t) = \int \sin(t) \, dt = -\cos(t) + C_2 \][/tex]
- For [tex]\(v_z(t)\)[/tex]:
[tex]\[ v_z(t) = \int 3t \, dt = \frac{3t^2}{2} + C_3 \][/tex]
4. Apply the initial condition ([tex]\(\vec{v}(0) = 0\)[/tex]) to find the constants of integration [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex]:
- When [tex]\(t = 0\)[/tex]:
[tex]\[ 0 = \sin(0) + C_1 \implies C_1 = 0 \][/tex]
[tex]\[ 0 = -\cos(0) + C_2 \implies C_2 = 1 \][/tex]
[tex]\[ 0 = \frac{3 \cdot 0^2}{2} + C_3 \implies C_3 = 0 \][/tex]
5. Substitute the constants back into the velocity components:
- [tex]\(v_x(t) = \sin(t)\)[/tex]
- [tex]\(v_y(t) = -\cos(t) + 1\)[/tex]
- [tex]\(v_z(t) = \frac{3t^2}{2}\)[/tex]
6. Combine the components to form the velocity vector [tex]\(\vec{v}(t)\)[/tex]:
[tex]\[ \vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k} \][/tex]
### Final Answer:
The velocity of the particle as a function of time [tex]\(t\)[/tex], given that it starts from rest, is:
[tex]\[ \boxed{\vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.