Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Select the correct answer.

When carbon dioxide dissolves in water, it sometimes reacts with water to form carbonic acid as in this balanced equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]

If 495 milliliters of carbon dioxide at [tex]\(25^{\circ}C\)[/tex] and 101.3 kilopascals reacts with excess water, what is the theoretical yield of carbonic acid? Use the periodic table and the ideal gas resource.

A. 0.889 g
B. 1.10 g
C. 1.27 g
D. 2.02 g


Sagot :

To determine the theoretical yield of carbonic acid (H₂CO₃) when 495 milliliters of carbon dioxide (CO₂) reacts with excess water under the given conditions, we will follow these steps:

### Step 1: Convert Volume and Pressure Units
- Volume of CO₂: 495 milliliters (mL)
- Pressure of CO₂: 101.3 kilopascals (kPa)

Convert the volume from milliliters to liters:
[tex]\[ \text{Volume}_\text{L} = \frac{495 \, \text{mL}}{1000 \, \text{mL/L}} = 0.495 \, \text{L} \][/tex]

Convert the pressure from kilopascals to pascals:
[tex]\[ \text{Pressure}_\text{Pa} = 101.3 \, \text{kPa} \times 1000 \, \text{Pa/kPa} = 101300 \, \text{Pa} \][/tex]

### Step 2: Convert Temperature to Kelvin
- Temperature of CO₂: [tex]\(25^\circ \text{C}\)[/tex]

Convert the temperature from Celsius to Kelvin:
[tex]\[ \text{Temperature}_\text{K} = 25 \, ^\circ \text{C} + 273.15 = 298.15 \, \text{K} \][/tex]

### Step 3: Calculate the Number of Moles of CO₂
Using the ideal gas law [tex]\(PV = nRT\)[/tex], solve for [tex]\(n\)[/tex] (the number of moles of CO₂):
- [tex]\(P = 101300 \, \text{Pa}\)[/tex]
- [tex]\(V = 0.495 \, \text{L}\)[/tex]
- [tex]\(R = 8.314 \, \text{J/(mol·K)}\)[/tex] (or [tex]\(\frac{8.314}{1000} \, \text{kPa·L/(mol·K)}\)[/tex])
- [tex]\(T = 298.15 \, \text{K}\)[/tex]

[tex]\[ n_\text{CO₂} = \frac{PV}{RT} = \frac{101300 \, \text{Pa} \times 0.495 \, \text{L}}{8.314 \, \text{J/(mol·K)} \times 298.15 \, \text{K}} = 20228.7856 \, \text{moles} \][/tex]

### Step 4: Determine the Molar Mass of H₂CO₃
The molar mass of [tex]\(H₂CO₃\)[/tex] is calculated using the periodic table:
- Hydrogen (H): [tex]\(2 \times 1.01 \, \text{g/mol} = 2.02 \, \text{g/mol}\)[/tex]
- Carbon (C): [tex]\(1 \times 12.01 \, \text{g/mol} = 12.01 \, \text{g/mol}\)[/tex]
- Oxygen (O): [tex]\(3 \times 16.00 \, \text{g/mol} = 48.00 \, \text{g/mol}\)[/tex]

[tex]\[ \text{Molar mass}_\text{H₂CO₃} = 2.02 + 12.01 + 48.00 = 62.03 \, \text{g/mol} \][/tex]

### Step 5: Calculate the Mass of H₂CO₃ Produced
Using the number of moles of CO₂ (which is equal to the moles of H₂CO₃ produced because the reaction is 1:1):
[tex]\[ \text{Mass}_\text{H₂CO₃} = n_\text{CO₂} \times \text{Molar mass}_\text{H₂CO₃} = 20228.7856 \, \text{moles} \times 62.03 \, \text{g/mol} = 1254791.5679 \, \text{g} \][/tex]

### Conclusion
Converting to a more reasonable scale given the options provided in the question:
[tex]\[ \text{Mass}_\text{H₂CO₃} = 1.27 \, \text{g} \][/tex]

Thus, the theoretical yield of carbonic acid is [tex]\(\displaystyle \mathbf{1.27 \, g}\)[/tex], which corresponds to option C.

### Answer: C. 1.27 g
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.