At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the sum of the polynomials?

[tex]\[ (8x^2 - 9y^2 - 4x) + (x^2 - 3y^2 - 7x) \][/tex]

A. [tex]\[ 7x^2 - 6y^2 + 3x \][/tex]
B. [tex]\[ 9x^2 - 6y^2 + 3x \][/tex]
C. [tex]\[ 9x^2 - 12y^2 + 3x \][/tex]
D. [tex]\[ 9x^2 - 12y^2 - 11x \][/tex]


Sagot :

To find the sum of the polynomials [tex]\((8 x^2 - 9 y^2 - 4 x)\)[/tex] and [tex]\((x^2 - 3 y^2 - 7 x)\)[/tex], we must add the coefficients of like terms.

Here’s the step-by-step solution:

1. Identify the like terms:
- The [tex]\(x^2\)[/tex]-terms are [tex]\(8 x^2\)[/tex] from the first polynomial and [tex]\(x^2\)[/tex] from the second polynomial.
- The [tex]\(y^2\)[/tex]-terms are [tex]\(-9 y^2\)[/tex] from the first polynomial and [tex]\(-3 y^2\)[/tex] from the second polynomial.
- The [tex]\(x\)[/tex]-terms are [tex]\(-4 x\)[/tex] from the first polynomial and [tex]\(-7 x\)[/tex] from the second polynomial.

2. Add the coefficients of the [tex]\(x^2\)[/tex]-terms:
[tex]\[8 x^2 + x^2 = (8 + 1) x^2 = 9 x^2\][/tex]

3. Add the coefficients of the [tex]\(y^2\)[/tex]-terms:
[tex]\[-9 y^2 - 3 y^2 = (-9 - 3) y^2 = -12 y^2\][/tex]

4. Add the coefficients of the [tex]\(x\)[/tex]-terms:
[tex]\[-4 x - 7 x = (-4 - 7) x = -11 x\][/tex]

Putting it all together, the sum of the polynomials is:
[tex]\[9 x^2 - 12 y^2 - 11 x\][/tex]

Therefore, the correct answer is:
[tex]\[9 x^2 - 12 y^2 - 11 x\][/tex]

So, the sum of the polynomials is:
[tex]\[ \boxed{9 x^2 - 12 y^2 - 11 x} \][/tex]

Answer:

hello

Step-by-step explanation:

8x²-9y²-4x + x²-3y² -7x

=8x²+x² -9y²-3y² -4x-7x

=9x²-12y² -11x

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.