At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Mathematics:

For any two square matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], which of the following is true?

A. [tex]\((AB)^T = A^{\top} B^T\)[/tex]

B. [tex]\((AB)^T = B^T A^T\)[/tex]

C. [tex]\(AB = BA\)[/tex]

D. [tex]\(A - B = B - A\)[/tex]


Sagot :

To determine which of the given options is true for any two square matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we need to carefully review each statement and understand the properties of matrix operations. Let's evaluate each option one by one:

a) [tex]\((A B)^T = A^{\top} B^T\)[/tex]

The transpose of a product of two matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] is not equal to [tex]\(A^{\top} B^T\)[/tex]. Instead, it follows a specific rule. Hence, this statement is false.

b) [tex]\((A B)^T = B^T A^T\)[/tex]

This is indeed a property of matrix transposes. When taking the transpose of a product of two matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the transpose of the product is equal to the product of the transposes in reverse order. Thus, [tex]\((A B)^T\)[/tex] is equal to [tex]\(B^T A^T\)[/tex]. Hence, this statement is true.

c) [tex]\(A B = B A\)[/tex]

This statement would mean that matrix multiplication is commutative. However, in general, matrix multiplication is not commutative. There are specific cases where it can be, such as [tex]\(A\)[/tex] and [tex]\(B\)[/tex] being special types of matrices (e.g., diagonal matrices), but in general, [tex]\(A B\)[/tex] is not equal to [tex]\(B A\)[/tex]. Hence, this statement is false.

d) [tex]\(A - B = B - A\)[/tex]

This simplification suggests that the order of subtraction does not matter, which would imply that [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are the same matrices because [tex]\(A - B = -(B - A)\)[/tex]. In general, for any two matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], this is not true unless [tex]\(A = B\)[/tex]. Hence, this statement is false.

Given these evaluations, the true statement is:

b) [tex]\((A B)^T = B^T A^T\)[/tex]

Thus, the correct answer is option b.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.