Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factorize the polynomial [tex]\( x^3 - 2x^2 - x + 2 \)[/tex], we follow these steps:
1. Identify possible rational roots: By the Rational Root Theorem, the possible rational roots of the polynomial are the factors of the constant term (2) divided by the factors of the leading coefficient (1). So the possible rational roots are [tex]\( \pm 1, \pm 2 \)[/tex].
2. Test the possible roots: We substitute these possible roots into the polynomial to determine if they are indeed roots.
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ 1^3 - 2(1)^2 - 1 + 2 = 1 - 2 - 1 + 2 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a root of the polynomial.
3. Factor out [tex]\( x - 1 \)[/tex]: Since [tex]\( x = 1 \)[/tex] is a root, [tex]\( (x - 1) \)[/tex] is a factor of the polynomial. Let's use polynomial long division or synthetic division to factor out [tex]\( (x - 1) \)[/tex] from [tex]\( x^3 - 2x^2 - x + 2 \)[/tex].
Performing synthetic division with [tex]\( x = 1 \)[/tex]:
[tex]\[ \begin{array}{r|rrrr} 1 & 1 & -2 & -1 & 2 \\ \hline & 1 & -1 & -2 & 0 \\ \end{array} \][/tex]
The coefficients of the quotient polynomial are [tex]\( 1, -1, -2 \)[/tex], giving us [tex]\( x^2 - x - 2 \)[/tex].
4. Factor the quadratic polynomial: Next, we need to factorize [tex]\( x^2 - x - 2 \)[/tex].
The quadratic [tex]\( x^2 - x - 2 \)[/tex] can be factored by finding two numbers that multiply to [tex]\(-2\)[/tex] and add to [tex]\(-1\)[/tex]. These numbers are [tex]\(-2\)[/tex] and [tex]\(1\)[/tex].
Therefore:
[tex]\[ x^2 - x - 2 = (x - 2)(x + 1) \][/tex]
5. Combine the factors: Now, we combine all the factors we've found:
[tex]\[ x^3 - 2x^2 - x + 2 = (x - 1)(x - 2)(x + 1) \][/tex]
So, the factorization of the polynomial [tex]\( x^3 - 2x^2 - x + 2 \)[/tex] is:
[tex]\[ (x - 1)(x - 2)(x + 1) \][/tex]
1. Identify possible rational roots: By the Rational Root Theorem, the possible rational roots of the polynomial are the factors of the constant term (2) divided by the factors of the leading coefficient (1). So the possible rational roots are [tex]\( \pm 1, \pm 2 \)[/tex].
2. Test the possible roots: We substitute these possible roots into the polynomial to determine if they are indeed roots.
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ 1^3 - 2(1)^2 - 1 + 2 = 1 - 2 - 1 + 2 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a root of the polynomial.
3. Factor out [tex]\( x - 1 \)[/tex]: Since [tex]\( x = 1 \)[/tex] is a root, [tex]\( (x - 1) \)[/tex] is a factor of the polynomial. Let's use polynomial long division or synthetic division to factor out [tex]\( (x - 1) \)[/tex] from [tex]\( x^3 - 2x^2 - x + 2 \)[/tex].
Performing synthetic division with [tex]\( x = 1 \)[/tex]:
[tex]\[ \begin{array}{r|rrrr} 1 & 1 & -2 & -1 & 2 \\ \hline & 1 & -1 & -2 & 0 \\ \end{array} \][/tex]
The coefficients of the quotient polynomial are [tex]\( 1, -1, -2 \)[/tex], giving us [tex]\( x^2 - x - 2 \)[/tex].
4. Factor the quadratic polynomial: Next, we need to factorize [tex]\( x^2 - x - 2 \)[/tex].
The quadratic [tex]\( x^2 - x - 2 \)[/tex] can be factored by finding two numbers that multiply to [tex]\(-2\)[/tex] and add to [tex]\(-1\)[/tex]. These numbers are [tex]\(-2\)[/tex] and [tex]\(1\)[/tex].
Therefore:
[tex]\[ x^2 - x - 2 = (x - 2)(x + 1) \][/tex]
5. Combine the factors: Now, we combine all the factors we've found:
[tex]\[ x^3 - 2x^2 - x + 2 = (x - 1)(x - 2)(x + 1) \][/tex]
So, the factorization of the polynomial [tex]\( x^3 - 2x^2 - x + 2 \)[/tex] is:
[tex]\[ (x - 1)(x - 2)(x + 1) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.