Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To understand the difference between the graphs of the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], let us first look at their definitions more closely:
1. The function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = \frac{2}{3}x^3 + 1 \][/tex]
2. The function [tex]\( g(x) \)[/tex] is defined as:
[tex]\[ g(x) = \frac{2}{3}(-x)^3 + 1 \][/tex]
Next, we simplify the expression for [tex]\( g(x) \)[/tex]:
- Note that [tex]\((-x)^3 = -x^3\)[/tex]. Therefore, we can rewrite [tex]\( g(x) \)[/tex] as:
[tex]\[ g(x) = \frac{2}{3}(-x)^3 + 1 = \frac{2}{3}(-x^3) + 1 = -\frac{2}{3}x^3 + 1 \][/tex]
The transformation from [tex]\( f(x) = \frac{2}{3}x^3 + 1 \)[/tex] to [tex]\( g(x) = -\frac{2}{3}x^3 + 1 \)[/tex] involves negating the [tex]\( x \)[/tex]-term inside the cubic function. This operation is indicative of a reflection over the [tex]\( y \)[/tex]-axis.
To confirm this, consider what reflecting a point [tex]\( (x, y) \)[/tex] over the [tex]\( y \)[/tex]-axis means:
- The point [tex]\( (x, y) \)[/tex] becomes [tex]\( (-x, y) \)[/tex].
In the context of functions, replacing [tex]\( x \)[/tex] with [tex]\(-x\)[/tex] in [tex]\( f(x) \)[/tex] yields the function [tex]\( g(x) \)[/tex], demonstrating that [tex]\( g(x) \)[/tex] is indeed [tex]\( f(x) \)[/tex] reflected over the [tex]\( y \)[/tex]-axis.
Therefore, the correct description of the difference between the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is:
A. [tex]\( g(x) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
1. The function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = \frac{2}{3}x^3 + 1 \][/tex]
2. The function [tex]\( g(x) \)[/tex] is defined as:
[tex]\[ g(x) = \frac{2}{3}(-x)^3 + 1 \][/tex]
Next, we simplify the expression for [tex]\( g(x) \)[/tex]:
- Note that [tex]\((-x)^3 = -x^3\)[/tex]. Therefore, we can rewrite [tex]\( g(x) \)[/tex] as:
[tex]\[ g(x) = \frac{2}{3}(-x)^3 + 1 = \frac{2}{3}(-x^3) + 1 = -\frac{2}{3}x^3 + 1 \][/tex]
The transformation from [tex]\( f(x) = \frac{2}{3}x^3 + 1 \)[/tex] to [tex]\( g(x) = -\frac{2}{3}x^3 + 1 \)[/tex] involves negating the [tex]\( x \)[/tex]-term inside the cubic function. This operation is indicative of a reflection over the [tex]\( y \)[/tex]-axis.
To confirm this, consider what reflecting a point [tex]\( (x, y) \)[/tex] over the [tex]\( y \)[/tex]-axis means:
- The point [tex]\( (x, y) \)[/tex] becomes [tex]\( (-x, y) \)[/tex].
In the context of functions, replacing [tex]\( x \)[/tex] with [tex]\(-x\)[/tex] in [tex]\( f(x) \)[/tex] yields the function [tex]\( g(x) \)[/tex], demonstrating that [tex]\( g(x) \)[/tex] is indeed [tex]\( f(x) \)[/tex] reflected over the [tex]\( y \)[/tex]-axis.
Therefore, the correct description of the difference between the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is:
A. [tex]\( g(x) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.