Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's determine the domain and range of the function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex].
### Domain
The domain of a function defines the set of all possible input values (x-values) for which the function is defined.
1. Identify the restriction:
The function contains a square root, [tex]\( \sqrt{x + 3} \)[/tex]. The expression inside the square root, [tex]\( x + 3 \)[/tex], must be non-negative because the square root of a negative number is not defined in the set of real numbers.
2. Set the restriction:
Therefore, we must have:
[tex]\[ x + 3 \geq 0 \][/tex]
3. Solve the inequality:
[tex]\[ x + 3 \geq 0 \implies x \geq -3 \][/tex]
Hence, the domain of the function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is:
[tex]\[ \boxed{x \geq -3} \][/tex]
### Range
The range of a function defines the set of all possible output values (y-values).
1. Analyze the function's behavior:
The function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is the negative of the square root function, shifted downward by 2 units.
2. Evaluate [tex]\( f(x) \)[/tex] at the boundary of the domain:
At the leftmost boundary of the domain ([tex]\( x = -3 \)[/tex]):
[tex]\[ f(-3) = -\sqrt{-3 + 3} - 2 = -\sqrt{0} - 2 = -0 - 2 = -2. \][/tex]
3. Consider the behavior as [tex]\( x \)[/tex] increases:
As [tex]\( x \)[/tex] increases from [tex]\( -3 \)[/tex] toward positive infinity, [tex]\( \sqrt{x + 3} \)[/tex] will increase. Since there is a negative sign in front of the square root, [tex]\( -\sqrt{x + 3} \)[/tex] will decrease, making the values more negative.
Therefore, as [tex]\( x \)[/tex] increases:
[tex]\[ f(x) = -\sqrt{x + 3} - 2 \leq -2 \][/tex]
Thus, the range of function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is:
[tex]\[ \boxed{y \leq -2} \][/tex]
Given the analysis above, the correct answers for the domain and range of the function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] are:
[tex]\[ \boxed{\text{domain: } x \geq -3, \text{ range: } y \leq -2} \][/tex]
### Domain
The domain of a function defines the set of all possible input values (x-values) for which the function is defined.
1. Identify the restriction:
The function contains a square root, [tex]\( \sqrt{x + 3} \)[/tex]. The expression inside the square root, [tex]\( x + 3 \)[/tex], must be non-negative because the square root of a negative number is not defined in the set of real numbers.
2. Set the restriction:
Therefore, we must have:
[tex]\[ x + 3 \geq 0 \][/tex]
3. Solve the inequality:
[tex]\[ x + 3 \geq 0 \implies x \geq -3 \][/tex]
Hence, the domain of the function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is:
[tex]\[ \boxed{x \geq -3} \][/tex]
### Range
The range of a function defines the set of all possible output values (y-values).
1. Analyze the function's behavior:
The function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is the negative of the square root function, shifted downward by 2 units.
2. Evaluate [tex]\( f(x) \)[/tex] at the boundary of the domain:
At the leftmost boundary of the domain ([tex]\( x = -3 \)[/tex]):
[tex]\[ f(-3) = -\sqrt{-3 + 3} - 2 = -\sqrt{0} - 2 = -0 - 2 = -2. \][/tex]
3. Consider the behavior as [tex]\( x \)[/tex] increases:
As [tex]\( x \)[/tex] increases from [tex]\( -3 \)[/tex] toward positive infinity, [tex]\( \sqrt{x + 3} \)[/tex] will increase. Since there is a negative sign in front of the square root, [tex]\( -\sqrt{x + 3} \)[/tex] will decrease, making the values more negative.
Therefore, as [tex]\( x \)[/tex] increases:
[tex]\[ f(x) = -\sqrt{x + 3} - 2 \leq -2 \][/tex]
Thus, the range of function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] is:
[tex]\[ \boxed{y \leq -2} \][/tex]
Given the analysis above, the correct answers for the domain and range of the function [tex]\( f(x) = -\sqrt{x + 3} - 2 \)[/tex] are:
[tex]\[ \boxed{\text{domain: } x \geq -3, \text{ range: } y \leq -2} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.