Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the angle made by the line [tex]\( x \cos \alpha + y \sin \alpha = p \)[/tex] with the positive [tex]\( x \)[/tex]-axis?

A. [tex]\( \alpha \)[/tex]

B. [tex]\( 180^{\circ} - \alpha \)[/tex]

C. [tex]\( 90^{\circ} - \alpha \)[/tex]

D. [tex]\( 90^{\circ} + \alpha \)[/tex]


Sagot :

To determine the angle that the line given by the equation [tex]\( x \cos \alpha + y \sin \alpha = p \)[/tex] makes with the positive [tex]\( x \)[/tex]-axis, we need to understand the form of the linear equation and how to interpret its parameters in terms of the angle of inclination.

Consider the standard form of a line:
[tex]\[ Ax + By + C = 0 \][/tex]

In this case, the given equation is:
[tex]\[ x \cos \alpha + y \sin \alpha - p = 0 \][/tex]

Here, [tex]\( A = \cos \alpha \)[/tex] and [tex]\( B = \sin \alpha \)[/tex]. Now, the slope [tex]\( m \)[/tex] of the line [tex]\( Ax + By + C = 0 \)[/tex] is given by:
[tex]\[ m = -\frac{A}{B} = -\frac{\cos \alpha}{\sin \alpha} = -\cot \alpha \][/tex]

The angle [tex]\( \theta \)[/tex], which the line makes with the positive [tex]\( x \)[/tex]-axis, is related to the slope by the tangent function:
[tex]\[ m = \tan \theta \][/tex]

Thus, if [tex]\( \tan \theta = -\cot \alpha \)[/tex], then:
[tex]\[ \tan \theta = -\frac{1}{\tan \alpha} = \tan (180^\circ - \alpha) \][/tex]

So, the angle [tex]\( \theta \)[/tex] is:
[tex]\[ \theta = 180^\circ - \alpha \][/tex]

Therefore, the angle made by the line [tex]\( x \cos \alpha + y \sin \alpha = p \)[/tex] with the positive [tex]\( x \)[/tex]-axis is [tex]\( 180^\circ - \alpha \)[/tex].

Hence, the correct option is:

b. [tex]\( 180^\circ - \alpha \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.