Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's work through the problem step by step.
### Problem
We need to find the expression [tex]\(x^3 - y^3\)[/tex].
### Solution
The problem states that we need to simplify the expression [tex]\(x^3 - y^3\)[/tex].
### Step-by-Step Solution
1. Understanding the Expression:
- The expression [tex]\(x^3 - y^3\)[/tex] represents the difference of two cubes.
2. Difference of Cubes Formula:
- The formula for the difference of two cubes is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
- Here, we can let [tex]\(a = x\)[/tex] and [tex]\(b = y\)[/tex].
3. Applying the Formula:
- Substitute [tex]\(a = x\)[/tex] and [tex]\(b = y\)[/tex] into the formula:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
4. Conclusion:
- Therefore, the expression [tex]\(x^3 - y^3\)[/tex] can be factored as:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
While we've shown the factorized form, the simplest form we started with is:
[tex]\[ x^3 - y^3 \][/tex]
So, the expression [tex]\(x^3 - y^3\)[/tex] is already in its simplest polynomial form.
### Problem
We need to find the expression [tex]\(x^3 - y^3\)[/tex].
### Solution
The problem states that we need to simplify the expression [tex]\(x^3 - y^3\)[/tex].
### Step-by-Step Solution
1. Understanding the Expression:
- The expression [tex]\(x^3 - y^3\)[/tex] represents the difference of two cubes.
2. Difference of Cubes Formula:
- The formula for the difference of two cubes is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
- Here, we can let [tex]\(a = x\)[/tex] and [tex]\(b = y\)[/tex].
3. Applying the Formula:
- Substitute [tex]\(a = x\)[/tex] and [tex]\(b = y\)[/tex] into the formula:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
4. Conclusion:
- Therefore, the expression [tex]\(x^3 - y^3\)[/tex] can be factored as:
[tex]\[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \][/tex]
While we've shown the factorized form, the simplest form we started with is:
[tex]\[ x^3 - y^3 \][/tex]
So, the expression [tex]\(x^3 - y^3\)[/tex] is already in its simplest polynomial form.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.