Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the common ratio of the associated geometric sequence from the table, let's analyze the [tex]\( y \)[/tex] values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 21 \\ \hline 3 & 63 \\ \hline 4 & 189 \\ \hline 5 & 567 \\ \hline \end{array} \][/tex]
The common ratio [tex]\( r \)[/tex] of a geometric sequence can be found by dividing any term in the sequence by the preceding term. Let's calculate the common ratio step-by-step for the given [tex]\( y \)[/tex] values:
1. Calculate the ratio between the second term and the first term:
[tex]\[ r = \frac{y_2}{y_1} = \frac{21}{7} = 3 \][/tex]
2. Calculate the ratio between the third term and the second term:
[tex]\[ r = \frac{y_3}{y_2} = \frac{63}{21} = 3 \][/tex]
3. Calculate the ratio between the fourth term and the third term:
[tex]\[ r = \frac{y_4}{y_3} = \frac{189}{63} = 3 \][/tex]
4. Calculate the ratio between the fifth term and the fourth term:
[tex]\[ r = \frac{y_5}{y_4} = \frac{567}{189} = 3 \][/tex]
Since the ratio between each pair of consecutive terms is consistently 3, the common ratio for this geometric sequence is [tex]\( 3 \)[/tex].
Thus, the correct answer is:
D. 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 21 \\ \hline 3 & 63 \\ \hline 4 & 189 \\ \hline 5 & 567 \\ \hline \end{array} \][/tex]
The common ratio [tex]\( r \)[/tex] of a geometric sequence can be found by dividing any term in the sequence by the preceding term. Let's calculate the common ratio step-by-step for the given [tex]\( y \)[/tex] values:
1. Calculate the ratio between the second term and the first term:
[tex]\[ r = \frac{y_2}{y_1} = \frac{21}{7} = 3 \][/tex]
2. Calculate the ratio between the third term and the second term:
[tex]\[ r = \frac{y_3}{y_2} = \frac{63}{21} = 3 \][/tex]
3. Calculate the ratio between the fourth term and the third term:
[tex]\[ r = \frac{y_4}{y_3} = \frac{189}{63} = 3 \][/tex]
4. Calculate the ratio between the fifth term and the fourth term:
[tex]\[ r = \frac{y_5}{y_4} = \frac{567}{189} = 3 \][/tex]
Since the ratio between each pair of consecutive terms is consistently 3, the common ratio for this geometric sequence is [tex]\( 3 \)[/tex].
Thus, the correct answer is:
D. 3
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.