Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's solve the given linear equation step-by-step and verify the result.
The equation is:
[tex]\[ \frac{4m + 3}{7} + 2 = \frac{m + 5}{2} \][/tex]
### Step 1: Eliminate the fractions
To eliminate the fractions, we can multiply every term by the least common multiple (LCM) of the denominators. The denominators are 7 and 2, so the LCM is 14.
Multiply every term by 14:
[tex]\[ 14 \cdot \left(\frac{4m + 3}{7}\right) + 14 \cdot 2 = 14 \cdot \left(\frac{m + 5}{2}\right) \][/tex]
This simplifies to:
[tex]\[ 2(4m + 3) + 28 = 7(m + 5) \][/tex]
### Step 2: Distribute and simplify both sides
Distribute the constants inside the parentheses:
[tex]\[ 2 \cdot 4m + 2 \cdot 3 + 28 = 7 \cdot m + 7 \cdot 5 \][/tex]
This simplifies to:
[tex]\[ 8m + 6 + 28 = 7m + 35 \][/tex]
Combine like terms:
[tex]\[ 8m + 34 = 7m + 35 \][/tex]
### Step 3: Isolate the variable
To isolate [tex]\(m\)[/tex], subtract [tex]\(7m\)[/tex] from both sides:
[tex]\[ 8m - 7m + 34 = 35 \][/tex]
This simplifies to:
[tex]\[ m + 34 = 35 \][/tex]
Now, subtract 34 from both sides:
[tex]\[ m = 35 - 34 \][/tex]
This gives:
[tex]\[ m = 1 \][/tex]
### Step 4: Verify the solution
Substitute [tex]\(m = 1\)[/tex] back into the original equation to verify it satisfies the equation:
[tex]\[ \frac{4(1) + 3}{7} + 2 = \frac{1 + 5}{2} \][/tex]
Simplify inside each fraction:
[tex]\[ \frac{4 + 3}{7} + 2 = \frac{6}{2} \][/tex]
So,
[tex]\[ \frac{7}{7} + 2 = 3 \][/tex]
This simplifies to:
[tex]\[ 1 + 2 = 3 \][/tex]
Indeed, [tex]\(3 = 3\)[/tex] is true.
Therefore, the solution to the equation is:
[tex]\[ m = 1 \][/tex]
And we have verified that this value satisfies the original equation.
The equation is:
[tex]\[ \frac{4m + 3}{7} + 2 = \frac{m + 5}{2} \][/tex]
### Step 1: Eliminate the fractions
To eliminate the fractions, we can multiply every term by the least common multiple (LCM) of the denominators. The denominators are 7 and 2, so the LCM is 14.
Multiply every term by 14:
[tex]\[ 14 \cdot \left(\frac{4m + 3}{7}\right) + 14 \cdot 2 = 14 \cdot \left(\frac{m + 5}{2}\right) \][/tex]
This simplifies to:
[tex]\[ 2(4m + 3) + 28 = 7(m + 5) \][/tex]
### Step 2: Distribute and simplify both sides
Distribute the constants inside the parentheses:
[tex]\[ 2 \cdot 4m + 2 \cdot 3 + 28 = 7 \cdot m + 7 \cdot 5 \][/tex]
This simplifies to:
[tex]\[ 8m + 6 + 28 = 7m + 35 \][/tex]
Combine like terms:
[tex]\[ 8m + 34 = 7m + 35 \][/tex]
### Step 3: Isolate the variable
To isolate [tex]\(m\)[/tex], subtract [tex]\(7m\)[/tex] from both sides:
[tex]\[ 8m - 7m + 34 = 35 \][/tex]
This simplifies to:
[tex]\[ m + 34 = 35 \][/tex]
Now, subtract 34 from both sides:
[tex]\[ m = 35 - 34 \][/tex]
This gives:
[tex]\[ m = 1 \][/tex]
### Step 4: Verify the solution
Substitute [tex]\(m = 1\)[/tex] back into the original equation to verify it satisfies the equation:
[tex]\[ \frac{4(1) + 3}{7} + 2 = \frac{1 + 5}{2} \][/tex]
Simplify inside each fraction:
[tex]\[ \frac{4 + 3}{7} + 2 = \frac{6}{2} \][/tex]
So,
[tex]\[ \frac{7}{7} + 2 = 3 \][/tex]
This simplifies to:
[tex]\[ 1 + 2 = 3 \][/tex]
Indeed, [tex]\(3 = 3\)[/tex] is true.
Therefore, the solution to the equation is:
[tex]\[ m = 1 \][/tex]
And we have verified that this value satisfies the original equation.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.