Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the explicit rule for the given geometric sequence, follow these steps:
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.