Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the explicit rule for the given geometric sequence, follow these steps:
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.