Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the explicit rule for the given geometric sequence, follow these steps:
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
1. Identify the first term [tex]\(a_1\)[/tex]:
- The first term is given as [tex]\(a_1 = 7\)[/tex].
2. Identify the common ratio [tex]\(r\)[/tex]:
- The recursive formula [tex]\(a_n = 13a_{n-1}\)[/tex] tells us that each term is obtained by multiplying the previous term by 13. Therefore, the common ratio [tex]\(r\)[/tex] is 13.
3. Recall the explicit formula for a geometric sequence:
- The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence with first term [tex]\(a_1\)[/tex] and common ratio [tex]\(r\)[/tex] is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
4. Substitute the given values into the explicit formula:
- Here, [tex]\(a_1 = 7\)[/tex] and [tex]\(r = 13\)[/tex].
- Substitute these values into the geometric sequence formula:
[tex]\[ a_n = 7 \cdot 13^{n-1} \][/tex]
5. Compare with the given options:
- Option A: [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
- Option B: [tex]\(a_n = 13 \cdot 7^{n-1}\)[/tex]
- Option C: [tex]\(a_n = 7 \cdot 13^{n+1}\)[/tex]
- Option D: [tex]\(a_n = 13 \cdot 7^{n+1}\)[/tex]
From the explicit formula derived, we see that it matches Option A.
Answer:
A. [tex]\(a_n = 7 \cdot 13^{n-1}\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.