At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To derive the explicit formula that can be used to find the account's balance at the beginning of year 7, let's recall how compound interest works. The general formula for compound interest is given by:
[tex]\[ A(t) = P \times (1 + r)^t \][/tex]
Where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
In this specific problem:
- The principal amount [tex]\( P \)[/tex] is \$800.
- The annual interest rate [tex]\( r \)[/tex] is 3%, which is 0.03 in decimal form.
- The time [tex]\( t \)[/tex] is 7 years.
By substituting the given values into the compound interest formula, we get:
[tex]\[ A(7) = 800 \times (1 + 0.03)^7 \][/tex]
Thus, the explicit formula that can be used to find the account's balance at the beginning of year 7 is:
[tex]\[ A(7) = 800 \times (1 + 0.03)^7 \][/tex]
This corresponds to option C in the given choices:
[tex]\[ A(7) = 800 \cdot(1+0.03)^7 \][/tex]
Therefore, the correct answer is:
C. [tex]\( A(7)=800 \cdot(1+0.03)^7 \)[/tex]
[tex]\[ A(t) = P \times (1 + r)^t \][/tex]
Where:
- [tex]\( A(t) \)[/tex] is the amount of money accumulated after [tex]\( t \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested for, in years.
In this specific problem:
- The principal amount [tex]\( P \)[/tex] is \$800.
- The annual interest rate [tex]\( r \)[/tex] is 3%, which is 0.03 in decimal form.
- The time [tex]\( t \)[/tex] is 7 years.
By substituting the given values into the compound interest formula, we get:
[tex]\[ A(7) = 800 \times (1 + 0.03)^7 \][/tex]
Thus, the explicit formula that can be used to find the account's balance at the beginning of year 7 is:
[tex]\[ A(7) = 800 \times (1 + 0.03)^7 \][/tex]
This corresponds to option C in the given choices:
[tex]\[ A(7) = 800 \cdot(1+0.03)^7 \][/tex]
Therefore, the correct answer is:
C. [tex]\( A(7)=800 \cdot(1+0.03)^7 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.