At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which of the given sequences is a geometric sequence, we need to check if the ratio between consecutive terms is constant for each sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.