Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given sequences is a geometric sequence, we need to check if the ratio between consecutive terms is constant for each sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.