Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given sequences is a geometric sequence, we need to check if the ratio between consecutive terms is constant for each sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
### Sequence A: [tex]\(1, 3, 9, 27, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{3}{1} = 3\)[/tex]
- [tex]\(\frac{9}{3} = 3\)[/tex]
- [tex]\(\frac{27}{9} = 3\)[/tex]
Since the ratio between consecutive terms is constant and equals 3, sequence A is a geometric sequence.
### Sequence B: [tex]\(3, 6, 9, 12, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{6}{3} = 2\)[/tex]
- [tex]\(\frac{9}{6} = 1.5\)[/tex]
- [tex]\(\frac{12}{9} = \frac{4}{3} \approx 1.33\)[/tex]
Since the ratios are not constant, sequence B is not a geometric sequence.
### Sequence C: [tex]\(1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)[/tex]
- [tex]\(\frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1/6}{1/2} = \frac{1}{6} \times \frac{2}{1} = \frac{2}{6} = \frac{1}{3}\)[/tex]
- [tex]\(\frac{\frac{1}{24}}{\frac{1}{6}} = \frac{1/24}{1/6} = \frac{1}{24} \times \frac{6}{1} = \frac{6}{24} = \frac{1}{4}\)[/tex]
Since the ratios between terms are not constant, sequence C is not a geometric sequence.
### Sequence D: [tex]\(-1, -1, 1, -1, -1, 1, \ldots\)[/tex]
1. To find the common ratio, we divide each term by the preceding term:
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
- [tex]\(\frac{-1}{1} = -1\)[/tex]
- [tex]\(\frac{-1}{-1} = 1\)[/tex]
- [tex]\(\frac{1}{-1} = -1\)[/tex]
Since the ratios are not constant (alternating between 1 and -1), sequence D is not a geometric sequence.
### Conclusion
- Sequence A ([tex]\(1, 3, 9, 27, \ldots\)[/tex]) is a geometric sequence.
- Sequences B, C, and D are not geometric sequences.
Thus, sequence A is the geometric sequence.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.