At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What is the angle made by the line [tex]\( x \cos \alpha + y \sin \alpha = p \)[/tex] with the positive [tex]\( x \)[/tex]-axis?

A. [tex]\(\alpha\)[/tex]
B. [tex]\(180^{\circ} - \alpha\)[/tex]
C. [tex]\(90^{\circ} - \alpha\)[/tex]
D. [tex]\(90^{\circ} + \alpha\)[/tex]


Sagot :

To determine the angle that the line [tex]\( x \cos \alpha + y \sin \alpha = p \)[/tex] makes with the positive [tex]\( x \)[/tex]-axis, we need to carefully consider the standard form of a linear equation and the associated trigonometric relationships.

First, recall that the general form of a line equation in Cartesian coordinates is:
[tex]\[ Ax + By + C = 0 \][/tex]

In our given line equation, we can rewrite it to the standard form:
[tex]\[ x \cos \alpha + y \sin \alpha = p \\ or, x \cos \alpha + y \sin \alpha - p = 0 \][/tex]

Here, [tex]\( A = \cos \alpha \)[/tex] and [tex]\( B = \sin \alpha \)[/tex].

The angle [tex]\( \theta \)[/tex] that a line makes with the positive [tex]\( x \)[/tex]-axis can be found using the relationship:
[tex]\[ \tan \theta = -\frac{A}{B} \][/tex]

For the given line equation:
[tex]\[ \tan \theta = -\frac{\cos \alpha}{\sin \alpha} = -\cot \alpha \][/tex]

The line's slope [tex]\( m \)[/tex] is therefore:
[tex]\[ m = -\cot \alpha \][/tex]

Thus, the angle [tex]\( \theta \)[/tex] can be determined as:
[tex]\[ \theta = \alpha \][/tex]

Therefore, the correct option which indicates the angle this line makes with the positive [tex]\( x \)[/tex]-axis is:

[tex]\[ \boxed{\alpha} \][/tex]

Hence, the correct answer is (6).