At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's solve this problem step-by-step. The half-life of argon-39 is 269 years, and we want to determine the fraction of the original amount of argon-39 remaining after 1,076 years.
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.