Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Alright, let's solve this problem step-by-step. The half-life of argon-39 is 269 years, and we want to determine the fraction of the original amount of argon-39 remaining after 1,076 years.
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.