Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which polynomials are in standard form, we need to ensure that the terms within each polynomial are arranged in descending order of the powers of the variable.
Let's analyze each polynomial individually:
### Polynomial A:
[tex]\[3z - 1\][/tex]
- The polynomial contains terms [tex]\(3z\)[/tex] and [tex]\(-1\)[/tex].
- The term [tex]\(3z\)[/tex] has a power of 1.[tex]\(z\)[/tex] and [tex]\(-1\)[/tex] has a power of 0.
- The terms are arranged in descending powers of [tex]\(z\)[/tex]: 1 and 0.
Thus, Polynomial A is in standard form.
### Polynomial B:
[tex]\[2 + 4x - 5x^2\][/tex]
- The polynomial contains terms [tex]\(2\)[/tex], [tex]\(4x\)[/tex], and [tex]\(-5x^2\)[/tex].
- The term [tex]\(-5x^2\)[/tex] has a power of 2, [tex]\(4x\)[/tex] has a power of 1, and [tex]\(2\)[/tex] has a power of 0.
- However, the terms are not arranged in descending powers of [tex]\(x\)[/tex]. The term with the highest power, [tex]\(-5x^2\)[/tex], should come first.
Thus, Polynomial B is not in standard form.
### Polynomial C:
[tex]\[-5p^5 + 2p^2 - 3p + 1\][/tex]
- The polynomial contains terms [tex]\(-5p^5\)[/tex], [tex]\(2p^2\)[/tex], [tex]\(-3p\)[/tex], and [tex]\(1\)[/tex].
- The term [tex]\(-5p^5\)[/tex] has a power of 5, [tex]\(2p^2\)[/tex] has a power of 2, [tex]\(-3p\)[/tex] has a power of 1, and [tex]\(1\)[/tex] has a power of 0.
- The terms are arranged in descending powers of [tex]\(p\)[/tex]: 5, 2, 1, and 0.
Thus, Polynomial C is in standard form.
### Polynomial D:
- This states "None of the above," but we have already determined that there are polynomials in standard form.
Based on our detailed analysis, Polynomials A and C are in standard form.
Therefore, the correct selections are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
Let's analyze each polynomial individually:
### Polynomial A:
[tex]\[3z - 1\][/tex]
- The polynomial contains terms [tex]\(3z\)[/tex] and [tex]\(-1\)[/tex].
- The term [tex]\(3z\)[/tex] has a power of 1.[tex]\(z\)[/tex] and [tex]\(-1\)[/tex] has a power of 0.
- The terms are arranged in descending powers of [tex]\(z\)[/tex]: 1 and 0.
Thus, Polynomial A is in standard form.
### Polynomial B:
[tex]\[2 + 4x - 5x^2\][/tex]
- The polynomial contains terms [tex]\(2\)[/tex], [tex]\(4x\)[/tex], and [tex]\(-5x^2\)[/tex].
- The term [tex]\(-5x^2\)[/tex] has a power of 2, [tex]\(4x\)[/tex] has a power of 1, and [tex]\(2\)[/tex] has a power of 0.
- However, the terms are not arranged in descending powers of [tex]\(x\)[/tex]. The term with the highest power, [tex]\(-5x^2\)[/tex], should come first.
Thus, Polynomial B is not in standard form.
### Polynomial C:
[tex]\[-5p^5 + 2p^2 - 3p + 1\][/tex]
- The polynomial contains terms [tex]\(-5p^5\)[/tex], [tex]\(2p^2\)[/tex], [tex]\(-3p\)[/tex], and [tex]\(1\)[/tex].
- The term [tex]\(-5p^5\)[/tex] has a power of 5, [tex]\(2p^2\)[/tex] has a power of 2, [tex]\(-3p\)[/tex] has a power of 1, and [tex]\(1\)[/tex] has a power of 0.
- The terms are arranged in descending powers of [tex]\(p\)[/tex]: 5, 2, 1, and 0.
Thus, Polynomial C is in standard form.
### Polynomial D:
- This states "None of the above," but we have already determined that there are polynomials in standard form.
Based on our detailed analysis, Polynomials A and C are in standard form.
Therefore, the correct selections are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.