Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the equation step-by-step:
Given:
[tex]\[ -5(4x - 2) = -2(3 + 6x) \][/tex]
Step 1: Distribute the constants on both sides.
On the left side, distribute [tex]\(-5\)[/tex]:
[tex]\[ -5(4x - 2) = -5 \cdot 4x + (-5) \cdot (-2) = -20x + 10 \][/tex]
On the right side, distribute [tex]\(-2\)[/tex]:
[tex]\[ -2(3 + 6x) = -2 \cdot 3 + (-2) \cdot 6x = -6 - 12x \][/tex]
So now the equation looks like this:
[tex]\[ -20x + 10 = -6 - 12x \][/tex]
Step 2: Combine like terms to isolate the variable [tex]\(x\)[/tex].
First, we want to get all the terms containing [tex]\(x\)[/tex] on one side and the constant terms on the other side.
Let's add [tex]\(12x\)[/tex] to both sides to move the [tex]\(x\)[/tex] terms together:
[tex]\[ -20x + 12x + 10 = -6 - 12x + 12x \][/tex]
[tex]\[ -8x + 10 = -6 \][/tex]
Next, subtract [tex]\(10\)[/tex] from both sides to move the constants to the other side:
[tex]\[ -8x + 10 - 10 = -6 - 10 \][/tex]
[tex]\[ -8x = -16 \][/tex]
Step 3: Solve for [tex]\(x\)[/tex].
Divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ \frac{-8x}{-8} = \frac{-16}{-8} \][/tex]
[tex]\[ x = 2 \][/tex]
So, the solution to the equation [tex]\( -5(4x - 2) = -2(3 + 6x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
Given:
[tex]\[ -5(4x - 2) = -2(3 + 6x) \][/tex]
Step 1: Distribute the constants on both sides.
On the left side, distribute [tex]\(-5\)[/tex]:
[tex]\[ -5(4x - 2) = -5 \cdot 4x + (-5) \cdot (-2) = -20x + 10 \][/tex]
On the right side, distribute [tex]\(-2\)[/tex]:
[tex]\[ -2(3 + 6x) = -2 \cdot 3 + (-2) \cdot 6x = -6 - 12x \][/tex]
So now the equation looks like this:
[tex]\[ -20x + 10 = -6 - 12x \][/tex]
Step 2: Combine like terms to isolate the variable [tex]\(x\)[/tex].
First, we want to get all the terms containing [tex]\(x\)[/tex] on one side and the constant terms on the other side.
Let's add [tex]\(12x\)[/tex] to both sides to move the [tex]\(x\)[/tex] terms together:
[tex]\[ -20x + 12x + 10 = -6 - 12x + 12x \][/tex]
[tex]\[ -8x + 10 = -6 \][/tex]
Next, subtract [tex]\(10\)[/tex] from both sides to move the constants to the other side:
[tex]\[ -8x + 10 - 10 = -6 - 10 \][/tex]
[tex]\[ -8x = -16 \][/tex]
Step 3: Solve for [tex]\(x\)[/tex].
Divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ \frac{-8x}{-8} = \frac{-16}{-8} \][/tex]
[tex]\[ x = 2 \][/tex]
So, the solution to the equation [tex]\( -5(4x - 2) = -2(3 + 6x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.