At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's work through the problem step by step.
We are tasked with finding the kinetic energy of a bullet with a mass of 0.162 kg, traveling at a velocity of 800 m/s as it leaves the muzzle of a gun.
### Step-by-Step Solution:
1. Understand the problem:
- We need to find the kinetic energy of the bullet.
- The mass of the bullet, [tex]\( m \)[/tex], is 0.162 kg.
- The velocity of the bullet, [tex]\( v \)[/tex], is 800 m/s.
2. Know the formula:
- The formula for kinetic energy [tex]\( (KE) \)[/tex] is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
- Here, [tex]\( m \)[/tex] is the mass of the object, and [tex]\( v \)[/tex] is its velocity.
3. Plug in the values:
- Substitute [tex]\( m = 0.162 \, \text{kg} \)[/tex] and [tex]\( v = 800 \, \text{m/s} \)[/tex] into the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \cdot 0.162 \, \text{kg} \cdot (800 \, \text{m/s})^2 \][/tex]
4. Calculate the velocity squared:
- First, calculate [tex]\( (800 \, \text{m/s})^2 \)[/tex]:
[tex]\[ (800 \, \text{m/s})^2 = 640000 \, \text{m}^2/\text{s}^2 \][/tex]
5. Calculate the product:
- Multiply [tex]\( 0.162 \)[/tex] by [tex]\( 640000 \)[/tex]:
[tex]\[ 0.162 \times 640000 = 103680 \, \text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]
6. Divide by 2:
- Finally, divide by 2 to get the kinetic energy:
[tex]\[ KE = \frac{103680}{2} = 51840 \, \text{J} \][/tex]
### Conclusion:
The kinetic energy of the bullet as it leaves the muzzle of the gun is [tex]\( 51840 \, \text{J} \)[/tex].
We are tasked with finding the kinetic energy of a bullet with a mass of 0.162 kg, traveling at a velocity of 800 m/s as it leaves the muzzle of a gun.
### Step-by-Step Solution:
1. Understand the problem:
- We need to find the kinetic energy of the bullet.
- The mass of the bullet, [tex]\( m \)[/tex], is 0.162 kg.
- The velocity of the bullet, [tex]\( v \)[/tex], is 800 m/s.
2. Know the formula:
- The formula for kinetic energy [tex]\( (KE) \)[/tex] is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
- Here, [tex]\( m \)[/tex] is the mass of the object, and [tex]\( v \)[/tex] is its velocity.
3. Plug in the values:
- Substitute [tex]\( m = 0.162 \, \text{kg} \)[/tex] and [tex]\( v = 800 \, \text{m/s} \)[/tex] into the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \cdot 0.162 \, \text{kg} \cdot (800 \, \text{m/s})^2 \][/tex]
4. Calculate the velocity squared:
- First, calculate [tex]\( (800 \, \text{m/s})^2 \)[/tex]:
[tex]\[ (800 \, \text{m/s})^2 = 640000 \, \text{m}^2/\text{s}^2 \][/tex]
5. Calculate the product:
- Multiply [tex]\( 0.162 \)[/tex] by [tex]\( 640000 \)[/tex]:
[tex]\[ 0.162 \times 640000 = 103680 \, \text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]
6. Divide by 2:
- Finally, divide by 2 to get the kinetic energy:
[tex]\[ KE = \frac{103680}{2} = 51840 \, \text{J} \][/tex]
### Conclusion:
The kinetic energy of the bullet as it leaves the muzzle of the gun is [tex]\( 51840 \, \text{J} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.