At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To compare the graphs of the two functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = 7 x^2 \)[/tex], let's analyze the transformations involved.
1. Original Function [tex]\( f(x) \)[/tex]:
- The function [tex]\( f(x) = x^2 \)[/tex] is a basic quadratic function. Its graph is a parabola that opens upwards, with its vertex at the origin (0,0).
2. Transformed Function [tex]\( g(x) \)[/tex]:
- The function [tex]\( g(x) = 7 x^2 \)[/tex] is another quadratic function, but multiplied by a factor of 7. This means each y-value of [tex]\( f(x) \)[/tex] is multiplied by 7 to get [tex]\( g(x) \)[/tex].
To understand how this multiplication affects the graph, let's consider some points:
- For [tex]\( x = 1 \)[/tex],
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(1) = 7(1^2) = 7 \)[/tex]
- For [tex]\( x = 2 \)[/tex],
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(2) = 7(2^2) = 28 \)[/tex]
- For [tex]\( x = -1 \)[/tex],
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( g(-1) = 7((-1)^2) = 7 \)[/tex]
From these points, we can see:
- When [tex]\( x = 1 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is 7 times that in [tex]\( f(x) \)[/tex].
- When [tex]\( x = 2 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is also 7 times that in [tex]\( f(x) \)[/tex].
- This pattern holds for any value of [tex]\( x \)[/tex]: [tex]\( g(x) = 7 \times f(x) \)[/tex].
Conclusion:
The factor of 7 affects only the vertical stretch of the graph. Specifically, it multiplies all the y-values by 7, stretching the graph vertically by a factor of 7.
Therefore, the correct statement is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] vertically stretched by a factor of 7.
1. Original Function [tex]\( f(x) \)[/tex]:
- The function [tex]\( f(x) = x^2 \)[/tex] is a basic quadratic function. Its graph is a parabola that opens upwards, with its vertex at the origin (0,0).
2. Transformed Function [tex]\( g(x) \)[/tex]:
- The function [tex]\( g(x) = 7 x^2 \)[/tex] is another quadratic function, but multiplied by a factor of 7. This means each y-value of [tex]\( f(x) \)[/tex] is multiplied by 7 to get [tex]\( g(x) \)[/tex].
To understand how this multiplication affects the graph, let's consider some points:
- For [tex]\( x = 1 \)[/tex],
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(1) = 7(1^2) = 7 \)[/tex]
- For [tex]\( x = 2 \)[/tex],
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(2) = 7(2^2) = 28 \)[/tex]
- For [tex]\( x = -1 \)[/tex],
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( g(-1) = 7((-1)^2) = 7 \)[/tex]
From these points, we can see:
- When [tex]\( x = 1 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is 7 times that in [tex]\( f(x) \)[/tex].
- When [tex]\( x = 2 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is also 7 times that in [tex]\( f(x) \)[/tex].
- This pattern holds for any value of [tex]\( x \)[/tex]: [tex]\( g(x) = 7 \times f(x) \)[/tex].
Conclusion:
The factor of 7 affects only the vertical stretch of the graph. Specifically, it multiplies all the y-values by 7, stretching the graph vertically by a factor of 7.
Therefore, the correct statement is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] vertically stretched by a factor of 7.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.