Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To compare the graphs of the two functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = 7 x^2 \)[/tex], let's analyze the transformations involved.
1. Original Function [tex]\( f(x) \)[/tex]:
- The function [tex]\( f(x) = x^2 \)[/tex] is a basic quadratic function. Its graph is a parabola that opens upwards, with its vertex at the origin (0,0).
2. Transformed Function [tex]\( g(x) \)[/tex]:
- The function [tex]\( g(x) = 7 x^2 \)[/tex] is another quadratic function, but multiplied by a factor of 7. This means each y-value of [tex]\( f(x) \)[/tex] is multiplied by 7 to get [tex]\( g(x) \)[/tex].
To understand how this multiplication affects the graph, let's consider some points:
- For [tex]\( x = 1 \)[/tex],
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(1) = 7(1^2) = 7 \)[/tex]
- For [tex]\( x = 2 \)[/tex],
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(2) = 7(2^2) = 28 \)[/tex]
- For [tex]\( x = -1 \)[/tex],
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( g(-1) = 7((-1)^2) = 7 \)[/tex]
From these points, we can see:
- When [tex]\( x = 1 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is 7 times that in [tex]\( f(x) \)[/tex].
- When [tex]\( x = 2 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is also 7 times that in [tex]\( f(x) \)[/tex].
- This pattern holds for any value of [tex]\( x \)[/tex]: [tex]\( g(x) = 7 \times f(x) \)[/tex].
Conclusion:
The factor of 7 affects only the vertical stretch of the graph. Specifically, it multiplies all the y-values by 7, stretching the graph vertically by a factor of 7.
Therefore, the correct statement is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] vertically stretched by a factor of 7.
1. Original Function [tex]\( f(x) \)[/tex]:
- The function [tex]\( f(x) = x^2 \)[/tex] is a basic quadratic function. Its graph is a parabola that opens upwards, with its vertex at the origin (0,0).
2. Transformed Function [tex]\( g(x) \)[/tex]:
- The function [tex]\( g(x) = 7 x^2 \)[/tex] is another quadratic function, but multiplied by a factor of 7. This means each y-value of [tex]\( f(x) \)[/tex] is multiplied by 7 to get [tex]\( g(x) \)[/tex].
To understand how this multiplication affects the graph, let's consider some points:
- For [tex]\( x = 1 \)[/tex],
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(1) = 7(1^2) = 7 \)[/tex]
- For [tex]\( x = 2 \)[/tex],
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(2) = 7(2^2) = 28 \)[/tex]
- For [tex]\( x = -1 \)[/tex],
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( g(-1) = 7((-1)^2) = 7 \)[/tex]
From these points, we can see:
- When [tex]\( x = 1 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is 7 times that in [tex]\( f(x) \)[/tex].
- When [tex]\( x = 2 \)[/tex], the y-value in [tex]\( g(x) \)[/tex] is also 7 times that in [tex]\( f(x) \)[/tex].
- This pattern holds for any value of [tex]\( x \)[/tex]: [tex]\( g(x) = 7 \times f(x) \)[/tex].
Conclusion:
The factor of 7 affects only the vertical stretch of the graph. Specifically, it multiplies all the y-values by 7, stretching the graph vertically by a factor of 7.
Therefore, the correct statement is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] vertically stretched by a factor of 7.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.