Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To rewrite the equation [tex]\( f(x) = (3x - 9)(x + 1) \)[/tex] in vertex form by completing the square, follow these steps:
1. Expand the equation:
[tex]\[ f(x) = (3x - 9)(x + 1) \][/tex]
Distribute the terms:
[tex]\[ f(x) = 3x(x + 1) - 9(x + 1) \][/tex]
[tex]\[ f(x) = 3x^2 + 3x - 9x - 9 \][/tex]
Combine like terms:
[tex]\[ f(x) = 3x^2 - 6x - 9 \][/tex]
2. Rewrite the quadratic in the form [tex]\( ax^2 + bx + c \)[/tex]:
[tex]\[ f(x) = 3x^2 - 6x - 9 \][/tex]
3. Complete the square:
- Factor out the coefficient of [tex]\( x^2 \)[/tex] (which is 3) from the first two terms:
[tex]\[ f(x) = 3(x^2 - 2x) - 9 \][/tex]
- To complete the square inside the parentheses, take half the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-2\)[/tex]), square it, and add and subtract this square inside the parentheses. Half of [tex]\(-2\)[/tex] is [tex]\(-1\)[/tex], and [tex]\((-1)^2\)[/tex] is 1:
[tex]\[ f(x) = 3(x^2 - 2x + 1 - 1) - 9 \][/tex]
- Simplify the terms inside the parentheses:
[tex]\[ f(x) = 3((x - 1)^2 - 1) - 9 \][/tex]
- Distribute the 3:
[tex]\[ f(x) = 3(x - 1)^2 - 3 - 9 \][/tex]
- Combine constants:
[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]
So, the equation in vertex form is:
[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]
1. Expand the equation:
[tex]\[ f(x) = (3x - 9)(x + 1) \][/tex]
Distribute the terms:
[tex]\[ f(x) = 3x(x + 1) - 9(x + 1) \][/tex]
[tex]\[ f(x) = 3x^2 + 3x - 9x - 9 \][/tex]
Combine like terms:
[tex]\[ f(x) = 3x^2 - 6x - 9 \][/tex]
2. Rewrite the quadratic in the form [tex]\( ax^2 + bx + c \)[/tex]:
[tex]\[ f(x) = 3x^2 - 6x - 9 \][/tex]
3. Complete the square:
- Factor out the coefficient of [tex]\( x^2 \)[/tex] (which is 3) from the first two terms:
[tex]\[ f(x) = 3(x^2 - 2x) - 9 \][/tex]
- To complete the square inside the parentheses, take half the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-2\)[/tex]), square it, and add and subtract this square inside the parentheses. Half of [tex]\(-2\)[/tex] is [tex]\(-1\)[/tex], and [tex]\((-1)^2\)[/tex] is 1:
[tex]\[ f(x) = 3(x^2 - 2x + 1 - 1) - 9 \][/tex]
- Simplify the terms inside the parentheses:
[tex]\[ f(x) = 3((x - 1)^2 - 1) - 9 \][/tex]
- Distribute the 3:
[tex]\[ f(x) = 3(x - 1)^2 - 3 - 9 \][/tex]
- Combine constants:
[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]
So, the equation in vertex form is:
[tex]\[ f(x) = 3(x - 1)^2 - 12 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.