Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step.
We are given the function:
[tex]\[ f(x) = x^2 - 2x - 15 \][/tex]
### 1. Finding the x-intercepts:
To find the x-intercepts, we need to solve the equation [tex]\( f(x) = 0 \)[/tex]. This means we solve:
[tex]\[ x^2 - 2x - 15 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. We can solve it by factoring or using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Let's factor this quadratic equation. We look for two numbers that multiply to [tex]\(-15\)[/tex] (the constant term) and add to [tex]\(-2\)[/tex] (the coefficient of the linear term). The numbers [tex]\(-5\)[/tex] and [tex]\(3\)[/tex] satisfy these conditions.
Thus, we can write:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) = 0 \][/tex]
Setting each factor equal to zero gives us the x-intercepts:
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]
So, the two x-intercepts are [tex]\( (-3, 0) \)[/tex] (smaller [tex]\( x \)[/tex]-value) and [tex]\( (5, 0) \)[/tex] (larger [tex]\( x \)[/tex]-value).
### 2. Showing that [tex]\( f'(x) = 0 \)[/tex] at some point between the two x-intercepts:
Next, we need to find the derivative of the function [tex]\( f(x) \)[/tex]. The derivative [tex]\( f'(x) \)[/tex] gives us the slope of the function at any point [tex]\( x \)[/tex].
[tex]\[ f(x) = x^2 - 2x - 15 \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} (x^2 - 2x - 15) = 2x - 2 \][/tex]
We need to find the value of [tex]\( x \)[/tex] where the derivative [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 2x - 2 = 0 \][/tex]
[tex]\[ 2x = 2 \][/tex]
[tex]\[ x = 1 \][/tex]
So, [tex]\( f'(x) = 0 \)[/tex] at [tex]\( x = 1 \)[/tex]. This point [tex]\( x = 1 \)[/tex] is indeed between the two x-intercepts [tex]\( -3 \)[/tex] and [tex]\( 5 \)[/tex].
### Summary:
[tex]\[ \begin{array}{c} f(x) = x^2 - 2x - 15 \\ (x, y) = (-3, 0) \quad \text{(smaller } x \text{-value)} \\ (x, y) = (5, 0) \quad \text{(larger } x \text{-value)} \end{array} \][/tex]
The value of [tex]\( x \)[/tex] such that [tex]\( f'(x) = 0 \)[/tex] is:
[tex]\[ x = 1 \][/tex]
Thus, both the x-intercepts and the critical point have been identified.
We are given the function:
[tex]\[ f(x) = x^2 - 2x - 15 \][/tex]
### 1. Finding the x-intercepts:
To find the x-intercepts, we need to solve the equation [tex]\( f(x) = 0 \)[/tex]. This means we solve:
[tex]\[ x^2 - 2x - 15 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. We can solve it by factoring or using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Let's factor this quadratic equation. We look for two numbers that multiply to [tex]\(-15\)[/tex] (the constant term) and add to [tex]\(-2\)[/tex] (the coefficient of the linear term). The numbers [tex]\(-5\)[/tex] and [tex]\(3\)[/tex] satisfy these conditions.
Thus, we can write:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) = 0 \][/tex]
Setting each factor equal to zero gives us the x-intercepts:
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]
So, the two x-intercepts are [tex]\( (-3, 0) \)[/tex] (smaller [tex]\( x \)[/tex]-value) and [tex]\( (5, 0) \)[/tex] (larger [tex]\( x \)[/tex]-value).
### 2. Showing that [tex]\( f'(x) = 0 \)[/tex] at some point between the two x-intercepts:
Next, we need to find the derivative of the function [tex]\( f(x) \)[/tex]. The derivative [tex]\( f'(x) \)[/tex] gives us the slope of the function at any point [tex]\( x \)[/tex].
[tex]\[ f(x) = x^2 - 2x - 15 \][/tex]
[tex]\[ f'(x) = \frac{d}{dx} (x^2 - 2x - 15) = 2x - 2 \][/tex]
We need to find the value of [tex]\( x \)[/tex] where the derivative [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 2x - 2 = 0 \][/tex]
[tex]\[ 2x = 2 \][/tex]
[tex]\[ x = 1 \][/tex]
So, [tex]\( f'(x) = 0 \)[/tex] at [tex]\( x = 1 \)[/tex]. This point [tex]\( x = 1 \)[/tex] is indeed between the two x-intercepts [tex]\( -3 \)[/tex] and [tex]\( 5 \)[/tex].
### Summary:
[tex]\[ \begin{array}{c} f(x) = x^2 - 2x - 15 \\ (x, y) = (-3, 0) \quad \text{(smaller } x \text{-value)} \\ (x, y) = (5, 0) \quad \text{(larger } x \text{-value)} \end{array} \][/tex]
The value of [tex]\( x \)[/tex] such that [tex]\( f'(x) = 0 \)[/tex] is:
[tex]\[ x = 1 \][/tex]
Thus, both the x-intercepts and the critical point have been identified.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.