Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which equation best approximates the line of best fit of Raquel's darts, we can follow these steps:
1. Extract Coordinates: Identify the given dart coordinates on the grid:
- [tex]\((-5, 0)\)[/tex]
- [tex]\((1, -3)\)[/tex]
- [tex]\((4, 5)\)[/tex]
- [tex]\((-8, -6)\)[/tex]
- [tex]\((0, 2)\)[/tex]
- [tex]\((9, 6)\)[/tex]
2. Calculate the Line of Best Fit:
We will use a statistical method like Linear Regression to calculate the line that best fits these points. The line of best fit is given by the equation [tex]\( y = mx + c \)[/tex] where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( c \)[/tex] is the y-intercept of the line.
3. Extract [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values: Separate the coordinates into [tex]\( x \)[/tex] and [tex]\( y \)[/tex] components:
- [tex]\( X = [-5, 1, 4, -8, 0, 9] \)[/tex]
- [tex]\( Y = [0, -3, 5, -6, 2, 6] \)[/tex]
4. Fit the Linear Model: Use a technique (like least squares) to fit a line to these points to find the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex].
5. Match the Line Equation:
Compare the calculated slope ([tex]\( m \)[/tex]) and intercept ([tex]\( c \)[/tex]) with the given options:
- [tex]\( y = 0.6x + 0.6 \)[/tex] where [tex]\( m = 0.6 \)[/tex] and [tex]\( c = 0.6 \)[/tex]
- [tex]\( y = 0.1x + 0.8 \)[/tex] where [tex]\( m = 0.1 \)[/tex] and [tex]\( c = 0.8 \)[/tex]
- [tex]\( y = 0.8x + 0.1 \)[/tex] where [tex]\( m = 0.8 \)[/tex] and [tex]\( c = 0.1 \)[/tex]
- [tex]\( y = 0.5x + 0.6 \)[/tex] where [tex]\( m = 0.5 \)[/tex] and [tex]\( c = 0.6 \)[/tex]
By going through this process, we find that the best fit for the line given Raquel's dart coordinates corresponds to the equation:
[tex]\[ y = 0.6x + 0.6 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
1. Extract Coordinates: Identify the given dart coordinates on the grid:
- [tex]\((-5, 0)\)[/tex]
- [tex]\((1, -3)\)[/tex]
- [tex]\((4, 5)\)[/tex]
- [tex]\((-8, -6)\)[/tex]
- [tex]\((0, 2)\)[/tex]
- [tex]\((9, 6)\)[/tex]
2. Calculate the Line of Best Fit:
We will use a statistical method like Linear Regression to calculate the line that best fits these points. The line of best fit is given by the equation [tex]\( y = mx + c \)[/tex] where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( c \)[/tex] is the y-intercept of the line.
3. Extract [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values: Separate the coordinates into [tex]\( x \)[/tex] and [tex]\( y \)[/tex] components:
- [tex]\( X = [-5, 1, 4, -8, 0, 9] \)[/tex]
- [tex]\( Y = [0, -3, 5, -6, 2, 6] \)[/tex]
4. Fit the Linear Model: Use a technique (like least squares) to fit a line to these points to find the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex].
5. Match the Line Equation:
Compare the calculated slope ([tex]\( m \)[/tex]) and intercept ([tex]\( c \)[/tex]) with the given options:
- [tex]\( y = 0.6x + 0.6 \)[/tex] where [tex]\( m = 0.6 \)[/tex] and [tex]\( c = 0.6 \)[/tex]
- [tex]\( y = 0.1x + 0.8 \)[/tex] where [tex]\( m = 0.1 \)[/tex] and [tex]\( c = 0.8 \)[/tex]
- [tex]\( y = 0.8x + 0.1 \)[/tex] where [tex]\( m = 0.8 \)[/tex] and [tex]\( c = 0.1 \)[/tex]
- [tex]\( y = 0.5x + 0.6 \)[/tex] where [tex]\( m = 0.5 \)[/tex] and [tex]\( c = 0.6 \)[/tex]
By going through this process, we find that the best fit for the line given Raquel's dart coordinates corresponds to the equation:
[tex]\[ y = 0.6x + 0.6 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.