Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, let's first recap some important trigonometric principles involving complementary angles. In a right triangle, the sum of the two non-right angles is [tex]\(90^\circ\)[/tex]. Two angles that sum to [tex]\(90^\circ\)[/tex] are called complementary angles.
Given:
- [tex]\(\angle X\)[/tex] and [tex]\(\angle Z\)[/tex] are complementary.
- [tex]\(\cos(X) = \frac{9}{11}\)[/tex].
Here's a step-by-step solution to find [tex]\(\sin(Z)\)[/tex]:
1. Understanding the Complementary Relationship:
- Since [tex]\(\angle X\)[/tex] and [tex]\(\angle Z\)[/tex] are complementary, we have:
[tex]\[ X + Z = 90^\circ \][/tex]
- The sine of an angle is equal to the cosine of its complementary angle:
[tex]\[ \sin(Z) = \cos(X) \][/tex]
2. Substitute the Given Value:
- We know [tex]\(\cos(X) = \frac{9}{11}\)[/tex].
- Therefore:
[tex]\[ \sin(Z) = \cos(X) = \frac{9}{11} \][/tex]
Thus, the value of [tex]\(\sin(Z)\)[/tex] is [tex]\(\frac{9}{11}\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{\frac{9}{11}} \][/tex]
From the given choices, the correct option is D.
Given:
- [tex]\(\angle X\)[/tex] and [tex]\(\angle Z\)[/tex] are complementary.
- [tex]\(\cos(X) = \frac{9}{11}\)[/tex].
Here's a step-by-step solution to find [tex]\(\sin(Z)\)[/tex]:
1. Understanding the Complementary Relationship:
- Since [tex]\(\angle X\)[/tex] and [tex]\(\angle Z\)[/tex] are complementary, we have:
[tex]\[ X + Z = 90^\circ \][/tex]
- The sine of an angle is equal to the cosine of its complementary angle:
[tex]\[ \sin(Z) = \cos(X) \][/tex]
2. Substitute the Given Value:
- We know [tex]\(\cos(X) = \frac{9}{11}\)[/tex].
- Therefore:
[tex]\[ \sin(Z) = \cos(X) = \frac{9}{11} \][/tex]
Thus, the value of [tex]\(\sin(Z)\)[/tex] is [tex]\(\frac{9}{11}\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{\frac{9}{11}} \][/tex]
From the given choices, the correct option is D.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.