Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the length of the diagonal [tex]\( x \)[/tex] of a rectangular napkin where the length [tex]\( l \)[/tex] is twice the width [tex]\( w \)[/tex], we can use the Pythagorean theorem. Here’s the step-by-step solution:
1. Let the width be [tex]\( w \)[/tex].
2. The length [tex]\( l \)[/tex] is given as twice the width, so [tex]\( l = 2w \)[/tex].
3. According to the Pythagorean theorem, the square of the diagonal [tex]\( x \)[/tex] can be found using the lengths of the sides of the rectangle:
[tex]\[ x^2 = l^2 + w^2 \][/tex]
4. Substituting the values for [tex]\( l \)[/tex] and [tex]\( w \)[/tex]:
[tex]\[ x^2 = (2w)^2 + w^2 \][/tex]
5. Simplify the equation:
[tex]\[ x^2 = 4w^2 + w^2 = 5w^2 \][/tex]
6. Taking the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{5w^2} = w\sqrt{5} \][/tex]
7. To express [tex]\( x \)[/tex] in the form [tex]\( \frac{\sqrt{a}}{b} \)[/tex], note that:
[tex]\[ x = w\sqrt{5} \][/tex]
This matches the form [tex]\( \frac{\sqrt{a}}{b} \)[/tex] if [tex]\( a = 5 \)[/tex] and [tex]\( b = 1 \)[/tex].
Therefore, the correct values are:
[tex]\( \boxed{1} \)[/tex]
1. Let the width be [tex]\( w \)[/tex].
2. The length [tex]\( l \)[/tex] is given as twice the width, so [tex]\( l = 2w \)[/tex].
3. According to the Pythagorean theorem, the square of the diagonal [tex]\( x \)[/tex] can be found using the lengths of the sides of the rectangle:
[tex]\[ x^2 = l^2 + w^2 \][/tex]
4. Substituting the values for [tex]\( l \)[/tex] and [tex]\( w \)[/tex]:
[tex]\[ x^2 = (2w)^2 + w^2 \][/tex]
5. Simplify the equation:
[tex]\[ x^2 = 4w^2 + w^2 = 5w^2 \][/tex]
6. Taking the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{5w^2} = w\sqrt{5} \][/tex]
7. To express [tex]\( x \)[/tex] in the form [tex]\( \frac{\sqrt{a}}{b} \)[/tex], note that:
[tex]\[ x = w\sqrt{5} \][/tex]
This matches the form [tex]\( \frac{\sqrt{a}}{b} \)[/tex] if [tex]\( a = 5 \)[/tex] and [tex]\( b = 1 \)[/tex].
Therefore, the correct values are:
[tex]\( \boxed{1} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.