Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the expression [tex]\( 12^{-2} \)[/tex]:
1. Substitute the base and the exponent into the expression: [tex]\[ 12^{-2} \][/tex]
2. Recall that a negative exponent means taking the reciprocal of the base and then raising it to the corresponding positive exponent. Specifically, for any nonzero number [tex]\( a \)[/tex] and integer [tex]\( n \)[/tex], [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex].
3. Apply the property of exponents to our expression: [tex]\[ 12^{-2} = \frac{1}{12^2} \][/tex]
4. Calculate [tex]\( 12^2 \)[/tex] : [tex]\[ 12^2 = 144 \][/tex]
5. Substitute back into the expression: [tex]\[ \frac{1}{12^2} = \frac{1}{144} \][/tex]
So, the simplest form of the expression [tex]\( 12^{-2} \)[/tex] is [tex]\( \frac{1}{144} \)[/tex].
The decimal form of [tex]\( \frac{1}{144} \)[/tex] is approximately: [tex]\[ 0.006944444444444444 \][/tex]
Therefore, [tex]\( 12^{-2} \)[/tex] in simplest form is [tex]\( \frac{1}{144} \)[/tex], and the decimal representation of this fraction is [tex]\( 0.006944444444444444 \)[/tex].
1. Substitute the base and the exponent into the expression: [tex]\[ 12^{-2} \][/tex]
2. Recall that a negative exponent means taking the reciprocal of the base and then raising it to the corresponding positive exponent. Specifically, for any nonzero number [tex]\( a \)[/tex] and integer [tex]\( n \)[/tex], [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex].
3. Apply the property of exponents to our expression: [tex]\[ 12^{-2} = \frac{1}{12^2} \][/tex]
4. Calculate [tex]\( 12^2 \)[/tex] : [tex]\[ 12^2 = 144 \][/tex]
5. Substitute back into the expression: [tex]\[ \frac{1}{12^2} = \frac{1}{144} \][/tex]
So, the simplest form of the expression [tex]\( 12^{-2} \)[/tex] is [tex]\( \frac{1}{144} \)[/tex].
The decimal form of [tex]\( \frac{1}{144} \)[/tex] is approximately: [tex]\[ 0.006944444444444444 \][/tex]
Therefore, [tex]\( 12^{-2} \)[/tex] in simplest form is [tex]\( \frac{1}{144} \)[/tex], and the decimal representation of this fraction is [tex]\( 0.006944444444444444 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.