At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the potential energy stored in a compressed spring, we can use the formula for elastic potential energy:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\( PE \)[/tex] is the potential energy, [tex]\( k \)[/tex] is the spring constant, and [tex]\( x \)[/tex] is the displacement (compression) of the spring.
Given the values:
- Displacement, [tex]\( x = 0.65 \)[/tex] meters
- Spring constant, [tex]\( k = 95 \)[/tex] N/m
We can now substitute these values into the formula:
[tex]\[ PE = \frac{1}{2} \times 95 \times (0.65)^2 \][/tex]
First, calculate [tex]\( x^2 \)[/tex]:
[tex]\[ (0.65)^2 = 0.4225 \][/tex]
Next, multiply this value by the spring constant [tex]\( k \)[/tex]:
[tex]\[ 95 \times 0.4225 = 40.1375 \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 40.1375 = 20.06875 \][/tex]
Therefore, the potential energy stored in the spring is approximately 20 J.
So, the correct answer is:
[tex]\[ \boxed{20 \text{ J}} \][/tex]
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\( PE \)[/tex] is the potential energy, [tex]\( k \)[/tex] is the spring constant, and [tex]\( x \)[/tex] is the displacement (compression) of the spring.
Given the values:
- Displacement, [tex]\( x = 0.65 \)[/tex] meters
- Spring constant, [tex]\( k = 95 \)[/tex] N/m
We can now substitute these values into the formula:
[tex]\[ PE = \frac{1}{2} \times 95 \times (0.65)^2 \][/tex]
First, calculate [tex]\( x^2 \)[/tex]:
[tex]\[ (0.65)^2 = 0.4225 \][/tex]
Next, multiply this value by the spring constant [tex]\( k \)[/tex]:
[tex]\[ 95 \times 0.4225 = 40.1375 \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 40.1375 = 20.06875 \][/tex]
Therefore, the potential energy stored in the spring is approximately 20 J.
So, the correct answer is:
[tex]\[ \boxed{20 \text{ J}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.