Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this question, we start with the coordinates given for the points [tex]\( Z, A, \)[/tex] and [tex]\( P \)[/tex]. They are:
[tex]\[ Z(-1, 5), A(1, 3), P(-2, 4) \][/tex]
We know that the point [tex]\( Z \)[/tex] is translated to a new point [tex]\( Z(1,1) \)[/tex]. To find the correct translation, we need to determine the translation vector. The translation vector represents the change required in both coordinates (x and y) to move from the initial position of [tex]\( Z \)[/tex] to the new position of [tex]\( Z \)[/tex].
[tex]\[ Z(-1, 5) \rightarrow Z(1, 1) \][/tex]
To find the translation vector, we examine the change in both x and y coordinates:
[tex]\[ \Delta x = 1 - (-1) = 2 \][/tex]
[tex]\[ \Delta y = 1 - 5 = -4 \][/tex]
Thus, the translation vector is:
[tex]\[ (2, -4) \][/tex]
Next, we apply this translation vector to the coordinates of points [tex]\( A \)[/tex] and [tex]\( P \)[/tex].
For point [tex]\( A \)[/tex]:
[tex]\[ A(1, 3) \][/tex]
We add the translation vector to [tex]\( A \)[/tex] coordinates:
[tex]\[ A_x' = 1 + 2 = 3 \][/tex]
[tex]\[ A_y' = 3 + (-4) = -1 \][/tex]
So, the new coordinates of [tex]\( A' \)[/tex] are:
[tex]\[ A'(3, -1) \][/tex]
For point [tex]\( P \)[/tex]:
[tex]\[ P(-2, 4) \][/tex]
We add the translation vector to [tex]\( P \)[/tex] coordinates:
[tex]\[ P_x' = -2 + 2 = 0 \][/tex]
[tex]\[ P_y' = 4 + (-4) = 0 \][/tex]
So, the new coordinates of [tex]\( P' \)[/tex] are:
[tex]\[ P'(0, 0) \][/tex]
Therefore, the translated coordinates are:
[tex]\[ A'(3, -1) \text{ and } P'(0, 0) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{A^{\prime}(3,-1) ; P(0,0)} \][/tex]
[tex]\[ Z(-1, 5), A(1, 3), P(-2, 4) \][/tex]
We know that the point [tex]\( Z \)[/tex] is translated to a new point [tex]\( Z(1,1) \)[/tex]. To find the correct translation, we need to determine the translation vector. The translation vector represents the change required in both coordinates (x and y) to move from the initial position of [tex]\( Z \)[/tex] to the new position of [tex]\( Z \)[/tex].
[tex]\[ Z(-1, 5) \rightarrow Z(1, 1) \][/tex]
To find the translation vector, we examine the change in both x and y coordinates:
[tex]\[ \Delta x = 1 - (-1) = 2 \][/tex]
[tex]\[ \Delta y = 1 - 5 = -4 \][/tex]
Thus, the translation vector is:
[tex]\[ (2, -4) \][/tex]
Next, we apply this translation vector to the coordinates of points [tex]\( A \)[/tex] and [tex]\( P \)[/tex].
For point [tex]\( A \)[/tex]:
[tex]\[ A(1, 3) \][/tex]
We add the translation vector to [tex]\( A \)[/tex] coordinates:
[tex]\[ A_x' = 1 + 2 = 3 \][/tex]
[tex]\[ A_y' = 3 + (-4) = -1 \][/tex]
So, the new coordinates of [tex]\( A' \)[/tex] are:
[tex]\[ A'(3, -1) \][/tex]
For point [tex]\( P \)[/tex]:
[tex]\[ P(-2, 4) \][/tex]
We add the translation vector to [tex]\( P \)[/tex] coordinates:
[tex]\[ P_x' = -2 + 2 = 0 \][/tex]
[tex]\[ P_y' = 4 + (-4) = 0 \][/tex]
So, the new coordinates of [tex]\( P' \)[/tex] are:
[tex]\[ P'(0, 0) \][/tex]
Therefore, the translated coordinates are:
[tex]\[ A'(3, -1) \text{ and } P'(0, 0) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{A^{\prime}(3,-1) ; P(0,0)} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.