Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The following reaction occurs in a car's catalytic converter.

[tex]\[ 2 \text{NO} (g) + 2 \text{CO} (g) \longrightarrow \text{N}_2 (g) + 2 \text{CO}_2 (g) \][/tex]

Which answer best describes the reducing and oxidizing processes in this reaction?

A. NO and CO are both reducing agents.
B. NO and CO are both oxidizing agents.
C. The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
D. The oxidation state of nitrogen in NO changes from 0 to +2, and the oxidation state of carbon in CO changes from +4 to +2 as the reaction proceeds.


Sagot :

Let’s break down the reaction and analyze the oxidation states of the elements involved.

The balanced reaction given is:
[tex]\[ 2 \text{NO} (g) + 2 \text{CO} (g) \rightarrow \text{N}_2 (g) + 2 \text{CO}_2 (g) \][/tex]

1. Determining the Oxidation States:
- The oxidation state of nitrogen (N) in nitric oxide ([tex]\(\text{NO}\)[/tex]) is +2.
- The oxidation state of carbon (C) in carbon monoxide ([tex]\(\text{CO}\)[/tex]) is +2.
- In the product nitrogen gas ([tex]\(\text{N}_2\)[/tex]), the oxidation state of nitrogen is 0.
- In the product carbon dioxide ([tex]\(\text{CO}_2\)[/tex]), the oxidation state of carbon is +4.

2. Changes in Oxidation States:
- For nitrogen in [tex]\(\text{NO}\)[/tex] to [tex]\(\text{N}_2\)[/tex]:
[tex]\[ \text{NO} \rightarrow \text{N}_2 \][/tex]
The oxidation state of nitrogen changes from +2 (in [tex]\(\text{NO}\)[/tex]) to 0 (in [tex]\(\text{N}_2\)[/tex]). This is a reduction process (gain of electrons).

- For carbon in [tex]\(\text{CO}\)[/tex] to [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \text{CO} \rightarrow \text{CO}_2 \][/tex]
The oxidation state of carbon changes from +2 (in [tex]\(\text{CO}\)[/tex]) to +4 (in [tex]\(\text{CO}_2\)[/tex]). This is an oxidation process (loss of electrons).

3. Describing Reducing and Oxidizing Processes:
- The compound [tex]\(\text{NO}\)[/tex] is reduced (the oxidation state of nitrogen decreases from +2 to 0), which means it is acting as an oxidizing agent.
- The compound [tex]\(\text{CO}\)[/tex] is oxidized (the oxidation state of carbon increases from +2 to +4), which means it is acting as a reducing agent.

So, the detailed changes in oxidation states during this reaction are:
- The oxidation state of nitrogen in [tex]\(\text{NO}\)[/tex] changes from +2 to 0.
- The oxidation state of carbon in [tex]\(\text{CO}\)[/tex] changes from +2 to +4.

Conclusion:
The correct answer that best describes the reducing and oxidizing processes in this reaction is:
- The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.