Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let’s break down the reaction and analyze the oxidation states of the elements involved.
The balanced reaction given is:
[tex]\[ 2 \text{NO} (g) + 2 \text{CO} (g) \rightarrow \text{N}_2 (g) + 2 \text{CO}_2 (g) \][/tex]
1. Determining the Oxidation States:
- The oxidation state of nitrogen (N) in nitric oxide ([tex]\(\text{NO}\)[/tex]) is +2.
- The oxidation state of carbon (C) in carbon monoxide ([tex]\(\text{CO}\)[/tex]) is +2.
- In the product nitrogen gas ([tex]\(\text{N}_2\)[/tex]), the oxidation state of nitrogen is 0.
- In the product carbon dioxide ([tex]\(\text{CO}_2\)[/tex]), the oxidation state of carbon is +4.
2. Changes in Oxidation States:
- For nitrogen in [tex]\(\text{NO}\)[/tex] to [tex]\(\text{N}_2\)[/tex]:
[tex]\[ \text{NO} \rightarrow \text{N}_2 \][/tex]
The oxidation state of nitrogen changes from +2 (in [tex]\(\text{NO}\)[/tex]) to 0 (in [tex]\(\text{N}_2\)[/tex]). This is a reduction process (gain of electrons).
- For carbon in [tex]\(\text{CO}\)[/tex] to [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \text{CO} \rightarrow \text{CO}_2 \][/tex]
The oxidation state of carbon changes from +2 (in [tex]\(\text{CO}\)[/tex]) to +4 (in [tex]\(\text{CO}_2\)[/tex]). This is an oxidation process (loss of electrons).
3. Describing Reducing and Oxidizing Processes:
- The compound [tex]\(\text{NO}\)[/tex] is reduced (the oxidation state of nitrogen decreases from +2 to 0), which means it is acting as an oxidizing agent.
- The compound [tex]\(\text{CO}\)[/tex] is oxidized (the oxidation state of carbon increases from +2 to +4), which means it is acting as a reducing agent.
So, the detailed changes in oxidation states during this reaction are:
- The oxidation state of nitrogen in [tex]\(\text{NO}\)[/tex] changes from +2 to 0.
- The oxidation state of carbon in [tex]\(\text{CO}\)[/tex] changes from +2 to +4.
Conclusion:
The correct answer that best describes the reducing and oxidizing processes in this reaction is:
- The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
The balanced reaction given is:
[tex]\[ 2 \text{NO} (g) + 2 \text{CO} (g) \rightarrow \text{N}_2 (g) + 2 \text{CO}_2 (g) \][/tex]
1. Determining the Oxidation States:
- The oxidation state of nitrogen (N) in nitric oxide ([tex]\(\text{NO}\)[/tex]) is +2.
- The oxidation state of carbon (C) in carbon monoxide ([tex]\(\text{CO}\)[/tex]) is +2.
- In the product nitrogen gas ([tex]\(\text{N}_2\)[/tex]), the oxidation state of nitrogen is 0.
- In the product carbon dioxide ([tex]\(\text{CO}_2\)[/tex]), the oxidation state of carbon is +4.
2. Changes in Oxidation States:
- For nitrogen in [tex]\(\text{NO}\)[/tex] to [tex]\(\text{N}_2\)[/tex]:
[tex]\[ \text{NO} \rightarrow \text{N}_2 \][/tex]
The oxidation state of nitrogen changes from +2 (in [tex]\(\text{NO}\)[/tex]) to 0 (in [tex]\(\text{N}_2\)[/tex]). This is a reduction process (gain of electrons).
- For carbon in [tex]\(\text{CO}\)[/tex] to [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \text{CO} \rightarrow \text{CO}_2 \][/tex]
The oxidation state of carbon changes from +2 (in [tex]\(\text{CO}\)[/tex]) to +4 (in [tex]\(\text{CO}_2\)[/tex]). This is an oxidation process (loss of electrons).
3. Describing Reducing and Oxidizing Processes:
- The compound [tex]\(\text{NO}\)[/tex] is reduced (the oxidation state of nitrogen decreases from +2 to 0), which means it is acting as an oxidizing agent.
- The compound [tex]\(\text{CO}\)[/tex] is oxidized (the oxidation state of carbon increases from +2 to +4), which means it is acting as a reducing agent.
So, the detailed changes in oxidation states during this reaction are:
- The oxidation state of nitrogen in [tex]\(\text{NO}\)[/tex] changes from +2 to 0.
- The oxidation state of carbon in [tex]\(\text{CO}\)[/tex] changes from +2 to +4.
Conclusion:
The correct answer that best describes the reducing and oxidizing processes in this reaction is:
- The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.