At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given options are solutions to the quadratic equation [tex]\(0 = 2x^2 + x + 4\)[/tex], we need to solve the equation [tex]\(2x^2 + x + 4 = 0\)[/tex].
### Step 1: Understand Solutions of Quadratic Equations
For any quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the solutions are given by the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 2: Identify the Coefficients
In this given quadratic equation [tex]\(2x^2 + x + 4 = 0\)[/tex]:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 4\)[/tex]
### Step 3: Compute the Discriminant
The discriminant [tex]\(\Delta\)[/tex] is calculated as:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 1^2 - 4(2)(4) \][/tex]
[tex]\[ \Delta = 1 - 32 \][/tex]
[tex]\[ \Delta = -31 \][/tex]
Since the discriminant is negative, we will have complex roots.
### Step 4: Apply the Quadratic Formula
Using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{-31}}{2(2)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{31}i}{4} \][/tex]
Thus, the solutions to the quadratic equation are:
[tex]\[ x = \frac{-1 - \sqrt{31}i}{4} \][/tex]
[tex]\[ x = \frac{-1 + \sqrt{31}i}{4} \][/tex]
### Step 5: Match the Solutions with the Options
Now we compare the provided options with our solutions:
Option A: [tex]\(\frac{-1 - i \sqrt{23}}{2}\)[/tex]
- This does not match either of our solutions.
Option B: [tex]\(\frac{-1 + i \sqrt{10}}{4}\)[/tex]
- This does not match either of our solutions.
Option C: [tex]\(\frac{-1 - i \sqrt{31}}{4}\)[/tex]
- This matches one of our solutions: [tex]\( x = \frac{-1 - \sqrt{31}i}{4} \)[/tex].
Option D: [tex]\(\frac{-1 - 3 i}{2}\)[/tex]
- This does not match either of our solutions.
### Conclusion
Among the given options, the correct solution to the quadratic equation [tex]\(2x^2 + x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-1 - i \sqrt{31}}{4}} \][/tex]
### Step 1: Understand Solutions of Quadratic Equations
For any quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the solutions are given by the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 2: Identify the Coefficients
In this given quadratic equation [tex]\(2x^2 + x + 4 = 0\)[/tex]:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = 4\)[/tex]
### Step 3: Compute the Discriminant
The discriminant [tex]\(\Delta\)[/tex] is calculated as:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 1^2 - 4(2)(4) \][/tex]
[tex]\[ \Delta = 1 - 32 \][/tex]
[tex]\[ \Delta = -31 \][/tex]
Since the discriminant is negative, we will have complex roots.
### Step 4: Apply the Quadratic Formula
Using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{-31}}{2(2)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{31}i}{4} \][/tex]
Thus, the solutions to the quadratic equation are:
[tex]\[ x = \frac{-1 - \sqrt{31}i}{4} \][/tex]
[tex]\[ x = \frac{-1 + \sqrt{31}i}{4} \][/tex]
### Step 5: Match the Solutions with the Options
Now we compare the provided options with our solutions:
Option A: [tex]\(\frac{-1 - i \sqrt{23}}{2}\)[/tex]
- This does not match either of our solutions.
Option B: [tex]\(\frac{-1 + i \sqrt{10}}{4}\)[/tex]
- This does not match either of our solutions.
Option C: [tex]\(\frac{-1 - i \sqrt{31}}{4}\)[/tex]
- This matches one of our solutions: [tex]\( x = \frac{-1 - \sqrt{31}i}{4} \)[/tex].
Option D: [tex]\(\frac{-1 - 3 i}{2}\)[/tex]
- This does not match either of our solutions.
### Conclusion
Among the given options, the correct solution to the quadratic equation [tex]\(2x^2 + x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-1 - i \sqrt{31}}{4}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.